|
[1] Ottino JM et al. Chaos, symmetry, and self-similarity: exploiting order and disorder in mixing process. Science 1992; 257: 754–60. [2] Schiff SJ et al. Controlling chaos in the brain. Nature 1994; 370: 615–20. [3] Brandt ME, Chen G. Bifurcation control of two nonlinear models of cardiac activity. IEEE Trans Circ Syst 1997; 44: 1031–4. [4] Chen H.-K. “Synchronization of two different chaotic systems: a new system and each of the dynamical systems Lorenz, Chen and ”, Chaos, Solitons and Fractals Vol. 25; 1049-56, 2005. [5] Chen H.-K., Lin T-N “Synchronization of chaotic symmetric gyros by one-way coupling conditions”, ImechE Part C: Journal of Mechanical Engineering Science Vol. 217; 331-40, 2003. [6] Chen H.-K. “Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping”, Journal of Sound & Vibration, Vol. 255; 719-40,2002. [7] Ge Z.-M., Yu T.-C., and Chen Y.-S. “Chaos synchronization of a horizontal platform system”, Journal of Sound and Vibration 731-49, 2003. [8] Ge Z.-M., Lin T.-N. “Chaos, chaos control and synchronization of electro-mechanical gyrostat system”, Journal of Sound and Vibration Vol. 259; No.3, 2003. [9] Ge Z.-M., Chen Y.-S. “Synchronization of unidirectional coupled chaotic systems via partial stability”, Chaos, Solitons and Fractals Vol. 21; 101-11, 2004. [10] Ge Z.-M., Chen C.-C. “Phase synchronization of coupled chaotic multiple time scales systems”, Chaos, Solitons and Fractals Vol. 20; 639-47, 2004. [11] Ge Z.-M., Lin C.-C. and Chen Y.-S. “Chaos, chaos control and synchronization of vibromrter system”, Journal of Mechanical Engineering Science Vol. 218; 1001-20, 2004. [12] Chen H.-K., Lin T.-N. and Chen J.-H. “The stability of chaos synchronization of the Japanese attractors and its application”, Japanese Journal of Applied Physics Vol. 42; No. 12, 7603-10, 2003. [13] Ge Z.-M. and Shiue “Non-linear dynamics and control of chaos for Tachometer”, Journal of Sound and Vibration Vol. 253; No4, 2002. [14] Ge Z.-M. and Lee C.-I. “Non-linear dynamics and control of chaos for a rotational machine with a hexagonal centrifugal governor with a spring”, Journal of Sound and Vibration Vol. 262; 845-64, 2003. [15] Ge Z.-M., Hsiao C.-M. and Chen Y.-S. “Non-linear dynamics and chaos control for a time delay Duffing system”, Int. J. of Nonlinear Sciences and Numerical Vol. 6; No. 2, 187-199, 2005. [16] Liao T.L., Huang N.S. “Control and synchronization of discrete-time chaotic systems via variable structure control technique”, Phys Lett A 262–68 1997. [17] Yang, Yu; Ma, Xi-Kui; Zhang, Hao “Synchronization and parameter identification of high-dimensional discrete chaotic systems via parametric adaptive control “, Chaos, Solitons and Fractals 28; 244-251, 2006. [18] Ge Z.-M., Tzen P.-C. and LeeS.-C. “Parametric analysis and fractal-like basins of attraction by modified interpolates cell mapping”, Journal of Sound and Vibration Vol. 253; No. 3, 2002. [19] Ge Z.-M. and Lee S.-C. “Parameter used and accuracies obtain in MICM global analyses”, Journal of Sound and Vibration Vol. 272; 1079-85, 2004. [20] Ge Z.-M. and Leu W.-Y. “Chaos synchronization and parameter identification for loudspeaker system” Chaos, Solitons and Fractals Vol. 21; 1231-47, 2004. [21] Ge Z.-M. and Chang C.-M. “Chaos synchronization and parameter identification for single time scale brushless DC motor”, Chaos, Solitons and Fractals Vol. 20; 889-903, 2004. [22] Ge Z.-M. and Lee J.-K. “Chaos synchronization and parameter identification for gyroscope system”, Applied Mathematics and Computation, Vol. 63; 667-82, 2004. [23] Ge Z.-M. and Cheng J.-W. “Chaos synchronization and parameter identification of three time scales brushless DC motor”, Chaos, Solitons and Fractals Vol. 24; 597-616, 2005. [24] Ge Z.-M. and Chen Y.-S. “Adaptive synchronization of unidirectional and mutual coupled chaotic systems”, Chaos, Solitons and Fractals Vol. 26; 881-88, 2005. [25] Edouard, D.; Dufour, P.; Hammouri, H. “Observer based multivariable control of a catalytic reverse flow reactor: comparison between LQR and MPC approaches “, Computers and Chemical Engineering 29; 851-865, 2005. [26] Ho, H.F.; Wong, Y.K.; Rad, A.B.; Lo, W.L. “State observer based indirect adaptive fuzzy tracking control”, Simulation Modelling Practice and Theory 13; 646-63, 2005. [27] Bai E-W, Lonngren K.E. “Synchronization and Control of Chaotic Systems”, Chaos, Solitons & Fractals 9; 1571-75, 1999. [28] Bai E-W, Lonngren K.E. “Sequential synchronization of two Lorenz systems using active control”, Chaos, Solitons & Fractals 7;1041-44, 2000. [29] Agiza H.N., Yassen M.T. “Synchronization of Rossler and Chen chaotic dynamical systems using active control “, Phys Lett A 4; 191-97, 2001. [30] Chen, Shihua; Lü, Jinhu “Parameters identification and synchronization of chaotic systems based upon adaptive control”, Phys Lett A 4; 353-58, 2002. [31] Li Z., Han C.Z., Shi S.J. “Modification for synchronization of Rossler and Chen chaotic systems”, Phys Lett A 3-4; 224-30, 2002. [32] Ho M.C., Hung Y.C., Chou C.H. “Phase and anti-phase synchronization of two chaotic systems by using active control”, Phys Lett A 1; 43-48, 2002. [33] Ho M.C., Hung Y.C. “Synchronization of two different systems by using generalized active control”, Phys Lett A 5-6; 424-28, 2002. [34] Huang L.L., Feng R.P., Wang M. “Synchronization of chaotic systems via nonlinear control”, Phys Lett A 4 271-75, 2004. [35] Chen H.K. “Global chaos synchronization of new chaotic systems via nonlinear control”, Chaos, Solitons & Fractals 4; 1245-51, 2005. [36] R. Hilfer, editor, Applications of fractional calculus in physics, New Jersey, World Scientific, 2001. [37] Ahmad W, Sprott JC “Chaos in fractional order system autonomous nonlinear systems”, Chaos, Solitons & Fractals 16: 339-351, 2003. [38] Oustaloup A., Levron F., Nanot F., Mathieu B. “Frequency band complex non integer differentiator: characterization and synthesis”, IEEE Trans CAS-I 47: 25–40, 2000. [39] Hartley T. T., Lorenzo C. F. “Dynamics and control of initialized fractional-order systems”, Nonlinear Dyn 29: 201–33, 2002. [40] Ahmad W., El-Khazali R., El-Wakil A. “Fractional-order Wien-bridge oscillator”, Electr Lett 37: 1110–2, 2001. [41] Li C., Liao X., Yu J. “Synchronization of fractional order chaotic systems”, Phys Rev E 68: 067203, 2003. [42] Arena P., Caponetto R., Fortuna L., Porto D. “Bifurcation and chaos in noninteger order cellular neural networks”, Int J Bifur Chaos 7: 1527–39 1998. [43] Arena P., Fortuna L., Porto D. “Chaotic behavior in noninteger-order cellular neural networks”, Phys Rev E 61: 776–81. [44] Arena P., Caponetto R., Fortuna L., Porto D. “Chaos in a fractional order Duffing system”, In: Proc. ECCTD, Budapest 1259–62, 1997. [45] Grigorenko I., Grigorenko E. “Chaotic dynamics of the fractional Lorenz system”, Phys Rev Lett 91: 034101, 2003. [46] Li C., Chen G. “Chaos and hyperchaos in fractional order Rössler equations”, Physica A 341: 55-61, 2004. [47] Ahmad W. M., Harb W. M. “On nonlinear control design for autonomous chaotic systems of integer and fractional orders”, Chaos, Solitons & Fractals 18: 693–701, 2003. [48] Wajdi M. Ahmad “Stabilization of generalized fractional order chaotic systems using state feedback control”, Chaos, Solitons and Fractals 22, 141-150, 2004. [49] Li C., Chen G. “Chaos in the fractional order Chen system and its control”, Chaos, Solitons & Fractals 22, 549-554, 2004. [50] Delbosco D., Rodino L. “Existence and uniqueness for a nonlinear fractional differential equation”, J. Math. Anal. Appl. 204: 609–625, 1996. [51] Diethelm K., Ford N.J. “Analysis of fractional differential equations”, J. Math. Anal. Appl. 265: 229–248, 2002. [52] Podlubny I. Fractional Differential Equations, Academic Press, New York, 1999. [53] Samko S., Kilbas A., Marichev O. Fractional Integrals and Derivatives, Gordon and Breach, Yverdon, 1993. [54] Chen H.-K. and Lee C.-I “Anti-control of chaos in rigid body motion”, Chaos, Solitons and Fractals Vol. 21; 957-965, 2004. [55] Ge Z.-M. and Wu H.-W. “Chaos synchronization and chaos anticontrol of a suspended track with moving loads”, Journal of Sound and Vibration Vol. 270; 685-712, 2004. [56] Ge Z.-M. and Yu C.-Y. and Chen Y.-S. “Chaos synchronization and chaos anticontrol of a rotational supported simple pendulum”, JSME International Journal, Series C, Vol. 47; No. 1, 233-41, 2004. [57] Ge Z.-M. and Leu W.-Y. “Anti-control of chaos of two-degree-of-freedom louderspeaker system and chaos system of different order system”, Chaos, Solitons and Fractals Vol. 20; 503-21, 2004. [58] Ge Z.-M., Cheng J.-W. and Chen Y.-S. “Chaos anticontrol and synchronization of three time scales brushless DC motor system”, Chaos, Solitons and Fractals Vol. 22; 1165-82, 2004. [59] Ge Z.-M. and Lee C.-I “Anticontrol and synchronization of chaos for an autonomous rotational machine system with a hexagonal centrifugal governor”, Chaos, Solitons and Fractals Vol. 282; 635-48, 2005. [60] Ge Z.-M. and Lee C.-I “Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay”, Chaos, Solitons and Fractals Vol. 23; 1855-64, 2005. [61] Codreanu S. “Desynchronization and chaotification of nonlinear dynamical systems”, Chaos, Solitons & Fractals 13: 839-43, 2002. [62] Tang K-S, Man KF, Zhong G-Q, Chen G. “Generating chaos via x|x|”, IEEE Trans Circ Syst I 48:636–41, 2001. [63] Wang X-F, Chen G. “Generating topological conjugate chaotic systems via feedback control”. IEEE Trans Circ Syst I 50:812-7, 2003. [64] Oldham K.B., Spanier J. The fractional Calculus. San Diego, CA: Academic, 1974. [65] Oustaloup A., Sabatier J., Lanusse P. “From fractal robustness to CRONE control”, Fract Calculus Appl Anal 2: 1–30, 1999. [66] Podlubny I., Petras I., Vinagre B. M., O’Leary P., Dorcak L. “Analogue realizations of fractional-order controllers”, Nonlinear Dyn 29: 281–96, 2002. [67] Chen Y. Q., Moore K. “Discretization schemes for fractional-order differentiators and integrators”, IEEE Trans CAS-I 49: 363–7, 2002. [68] Hwang C., Leu J.-F., Tsay S.-Y. “A note on time-domain simulation of feedback fractional-order systems”, IEEE Trans Auto Contr 47: 625–31, 2002. [69] Charef A., Sun H. H., Tsao Y. Y., Onaral B. “Fractal System as Represented by Singularity Function”, IEEE Transactions on Automatic control Vol 37, No 9, 1992. [70] Tom T. Hartley, Carl F. Lorenzo, Helen Killory Qammer “Chaos in Fractional Order Chua’s System”, IEEE, Tran. on circuit and systems Vol 42, No 8, 1995. [71] van der Pol, B. “On relaxation oscillations”, Philosophical Magazine 2, 978-92, 1926. [72] van der Pol, B. and van der Mark, J. “Frequency demultiplication”, Nature 120, 363-4, 1927. [73] van der Pol, B. and van der Mark, J. “The heartbeat considered as a relaxarion oscillation and an electrical model of the heart”, Philosophical Magazine 6, 763-75, 1928. [74] Ge, Z.M., Yi, C.X., “Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order system”, Chaos, Solitons and Fractals 2006, in press.
|