跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 00:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴祐民
論文名稱:狹窄水平雙套管中R-134a冷媒流動沸騰熱傳和氣泡特性研究
論文名稱(外文):Heat Transfer and Bubble Characteristics Associated with Flow Boiling of Refrigerant R-134a in a Horizontal Narrow Annular Duct
指導教授:林清發林清發引用關係
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:171
中文關鍵詞:狹窄雙套管次冷及飽和流動沸騰冷媒R-134a熱傳及氣泡特徵沸騰曲線
外文關鍵詞:narrow annular ductsubcooled and saturated flow boilingR-134aheat transfer and bubble characteristicsboiling curve
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本研究以實驗方式探討管道尺寸對流動沸騰熱傳(含次冷及飽和流動沸騰)及相關氣泡特徵之影響。以環保冷媒R-134a為工作流體流入一水平狹窄雙套管之測試段,並流道之間隙由0.2至2.0mm。測試段則由玻璃外管及加熱內銅管組成來量測熱傳係數及流場觀測。一電橋式加熱棒置於銅管內部提供熱通量加熱狹窄流道內流動之冷媒。
首先,提出冷媒R-134a在飽和流動沸騰之測試結果。從所量測之沸騰曲線發現,沸騰初始之溫度突降現象在飽和流動沸騰中並不明顯。飽和流動沸騰熱傳係數隨尺寸減少而增加。此外,熱通量增加亦會使得熱傳係數明顯增加。然而,冷媒之質通量及飽和溫度對熱傳係數影響甚小。從流場觀測之結果顯示氣泡脫離尺寸隨著質通量增加而稍微減小。並且在高熱通量下,許多氣泡從加熱表面之成核孔產生並趨向合併成大氣泡。在較小間隙如0.2及0.5mm,流譜將由氣泡流轉變為彈狀流。在管道中之彈狀流的特徵則是由液狀彈狀消長伴隨大、小氣泡。
接著,冷媒R-134a在次冷流動沸騰之熱傳結果以沸騰曲線及熱傳係數型式表示。在沸騰曲線中可發現沸騰初始之溫度突降現象在次冷流動沸騰中非常明顯。次冷流動沸騰熱傳係數隨間隙尺寸減少而增加但隨次冷度增加而減少。此外,熱通量增加亦會使得熱傳係數明顯增加。然而,冷媒之質通量及飽和溫度對熱傳係數影響不大。次冷流動沸騰之流場觀測顯示氣泡隨冷媒之質通量及次冷度增加而被抑制,然而增加熱通量對氣泡數目、合併及脫離頻率則有正面影響。再者,飽和溫度降低造成氣泡脫離頻率及成核密度減小。在較小間隙如0.2及0.5mm,伴隨著高熱通量將使流譜由氣泡流轉變為彈狀流。隨著尺寸變小將使得氣泡脫離頻率及彈狀流中大氣泡平均速度增加。
最後,我們把這個實驗中流動沸騰氣泡脫離直徑、產生頻率及成核密度的資料作分析,求出氣泡特微之3個經驗式,並利用此經驗公式推得氣泡流區之熱傳係數。至於彈狀流區之熱傳係數則則是修正 Cornwell and Kew 經驗式所得。
ABSTRACT i
CONTENTS iii
LIST OF TABLES v
LIST OF FIGURES vi
NOMENCLATURE xv
CHAPTER 1 INTRODUCTION 1
1.1 New Refrigerants - Ozone Friendly Refrigerants to Substitute for R-22 2
1.2 Flow Boiling – Brief Description 3
1.3 Literature Review - Flow Boiling Heat Transfer 7
1.4 Literature Review - Flow patterns and bubble characteristics 10
1.5 Literature Review - Correlation Equations for Two-phase Flow 12
1.6 Objective of The Present Study 13
CHAPTER 2 EXPERIMENTAL APPARATUS AND PROCEDURES 22
2.1 Refrigerant flow loop 22
2.2 Test Section 23
2.3 Water loop for preheater 24
2.4 Water-glycol loop 24
2.5 DC Power Supply 25
2.6 Photographic System 25
2.7 Data acquisition 25
2.8 Experimental Procedures 26
2-9 Experimental Parameters 26
CHAPTER 3 DATA REDUCTION 33
3.1 Flow Boiling Heat Transfer Coefficient 33
3.2 Flow Boiling Bubble characteristics 35
3.3 Uncertainty Analysis 36
CHAPTER 4 SATURATED FLOW BOILING OF R-134a IN A HORIZONTAL NARROW ANNULAR DUCT 38
4.1 Single-phase Heat Transfer 38
4.2 Saturated Flow Boiling Curves 39
4.3 Saturated Flow Boiling Heat Transfer Coefficient 40
4.4 Bubbles Characteristics in Saturated Flow Boiling 42
4.5 Correlation Equations 47
4.6 Concluding Remarks 50
CHAPTER 5 SUBCOOLED FLOW BOILING OF R-134a IN A HORIZONTAL NARROW ANNULAR DUCT 94
5.1 Subcooled Flow Boiling Curves 94
5.2 Subcooled Flow Boiling Heat Transfer Coefficient 96
5.3 Bubble Behavior in Subcooled Flow Boiling 97
5.4 Correlation Equations 104
5.5 Concluding Remarks 107
CHAPTER 6 CONCLUDING REMARKS AND RECOMMENDATION FOR FUTURE WORK 161
6.1 Concluding Remarks 161
6.2 Recommendation for Future Work 162
REFERENCES 164
LIST OF PUBLICATION 171
Alternative refrigerants
1. P. A. Newman, Preserving earth’s stratosphere, Mechanical Engineering (1998) 88-91.
2. S. Gopalnarayanan, Choosing the right refrigerant, Mechanical Engineering (1998) 92-95.
3. A. Cavallini, Review Paper: Working fluids for mechanical refrigerant – Invited paper presented at the 19th international congress of refrigerant, International Journal of Refrigeration 19(1996) 485-496.
4. J. P. Meyer, Experimental evaluation of five refrigerants as replacements for R-22, ASHRAE Transactions: Symposia 106 (2000) 583-588.
5. S. Devotta, A. V. Waghmare, N. N. Sawant, and B. M. Domkundwar, Alternatives to HCFC-22 for air conditioners, Applied Thermal Engineering 21 (2001) 703-715.

Flow boiling basic terminology

6. S. G. Kandlikar, Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling, ASME Journal of Heat Transfer 120 (1998) 395-401.
7. J. G. Collier, Convective boiling and condensation, 2nd ed., McGraw-Hill, 1982.
8. P.S. Wu, The effects of concave curvature on subcooled flow boiling from a small, high heat flux region, Ph.D thesis, University of Minnesota, 1994.
9. Hsu, Y. Y., On the Size Range of Active Nucleation Cavities on a Heating Surface, ASME Journal of Heat Transfer 84(1962) 207–216.
10. Hahne, E., Spindle, K., and Shen., N., Incipience of Flow Boiling in Subcooled Well Wetting Fluids, Proceedings 9th International Heat Transfer Conference 2(1990)69–74.
11. R. Hino and T. Ueda, Studies on heat transfer and flow characteristics in subcooled flow boiling-part 1. boiling characteristics, International Journal of Multiphase Flow 11 (1985) 269-281.

Flow Boiling Heat Transfer

12. H. M�刜ler-Steinhagen, A. P. Watkinson, and N. Epstein, Subcooled-boiling and convective heat transfer to heptanes flowing inside an annulus and past a coiled wire: part I–experimental results, ASME Journal of Heat Transfer 108 (1986) 922-927.
13. A. Hasan, R. P. Roy and S. P. Kalra, Experiments on subcooled flow boiling heat transfer in a vertical annular channel, International Journal of Heat and Mass Transfer 33(1990) 2285-2293.
14. P. Sivagnanam, A. R. Balakrishnan and Y. B. G. Varma, On the mechanism of subcooled flow boiling of binary mixtures, International Journal of Heat and Mass Transfer 37(1994) 681-689.
15. V. H. Del Valle M. and D. B. R. Kenning, Subcooled flow boiling at high heat flux, International Journal of Heat and Mass Transfer 28 (1985) 1907-1920.
16. C. P. Yin, Y. Y. Yan, T. F. Lin and B. C. Yang, Subcooled flow boiling heat transfer of R-134a and associated bubble characteristics in a horizontal annular channel, International Journal of Heat and Mass Transfer 43 (2000) 1885-1896.
17. N. Hammouda, D. C. Groeneveld and S. C. Cheng, An experimental study of subcooled film boiling of refrigerants in vertical up-flow, International Journal of Heat and Mass Transfer 39 (1996) 3799-3812.
18. S. S. Mehendale, A. M. Jacobi, and R. K. Shah, Fluid flow and heat transfer at micro- and meso-scale with application to heat exchanger design, Appl. Mech. Rev. 53 (2000) 175-193.
19. B. Watel, Review of saturated flow boiling in small passages of compact heat exchangers, International Journal of Thermal Science 42(2003)107-140.
20. C. Vlasie, H. Macchi, J. Guilpart, and B. Agostini, Flow boiling in small diameter channels, International Journal of Refrigeration 27(2004)191-201.
21. S. G. Kandlikar, Fundamental issues related to flow boiling in mini-channels and micro-channels, Experimental Thermal and Fluid Science 26(14)(2002)389-407.
22. S. G. Kandlikar, Heat transfer mechanisms during flow boiling in microchannels, ASME Journal of Heat Transfer 126(2004)8-16
23. W. Yu, D. M. France, M. W. Wambsganss, and J. R. Hull, Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube, International Journal of Multiphase Flow 28 (6) (2002) 927-941.
24. Y. Fujita, Y. Yang, and N. Fujita, Flow boiling heat transfer and pressure drop in uniformly heated small tubes, Proceedings of the Twelfth International Heat Transfer Conference 3 (2002) 743-748.
25. G. M. Lazarek and S. H. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113, International Journal of Heat and Mass Transfer 25 (7) (1982) 945-960.
26. S. Lin, P. A. Kew and K. Cornwell, Two-phase heat transfer to a refrigerant in a 1 mm diameter tube, International Journal of Refrigeration 24 (1) (2001) 51-56.
27. P. A. Kew and K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, Applied Thermal Engineering 17 (8-10) (1997) 705-715.
28. T. N. Tran, M. W. Wambsganss, and D. M. France, Small circular- and rectangular-channel boiling with two refrigerants, International Journal of Multiphase Flow 22 (3) (1996) 485-498.
29. Z. Y. Bao, D. F. Fletcher, and B. S. Haynes, Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages, International Journal of Heat and Mass Transfer 43 (18) (2000) 3347-3358.
30. G. R. Warrier, V. K. Dhir, and L. A. Momoda, Heat transfer and pressure drop in narrow rectangular channels, Experimental Thermal and Fluid Science 26 (1) (2002) 53-64.
31. H. Oh, M. Katsuta, K. Shibata, Heat transfer characteristics of R134a in a capillary tube heat exchanger, in: Proc. of 11th International Heat Transfer Conference 6(1998) 131-136.
32. B. Sumith, F. Kaminaga, and K. Matsumura, Saturated flow boiling of water in a vertical small diameter tube, Experimental Thermal and Fluid Science 27(7)(2003)789-801
33. K. Moriyama, A. Inoue, and H. Ohira, The thermohydraulic characteristics of two-phase flow in extremely narrow channels (The frictional pressure drop and heat transfer of boiling two-phase flow, Analytical Model), Heat Transfer—Japan. Res. 21 (8) (1992) 823–856.
34. M. Kureta, T. Kobayashi, K. Mishima, and H. Nishihara, Pressure drop and heat transfer for flow boiling of water in small-diameter tubes, JSME Internat. J. Ser. B Fluids Thermal Engrg. 41 (4) (1998) 871–879.
35. T.N. Tran, M.W. Wambsganss, D.M. France, and J.A. Jendrzejczyk, Boiling heat transfer in a small, horizontal, rectangular channel, Heat Transfer, Atlanta, AIChE Symp. Ser. 89 (295) (1993) 253–261.
36. B.S. Haynes and D.F. Fletcher, Subcooled flow boiling heat transfer in narrow passages, International Journal of Heat and Mass Transfer 46 (2003) 3673–3682.
37. M. Piasecka, S. Hozejowska, and M. E. Poniewski, Experimental evaluation of flow boiling incipience of subcooled fluid in a narrow channel, International Journal of Heat and Fluid Flow 25 (2004) 159-172.
38. V. V. Kuznetsov, O. S. Kim, and A. S. Shamirzaev, Flow boiling heat transfer in an annular channel with a small gap, Russ. J. Thermophys. 9(4) (1999)273-283.
39. S. Qiu, M. Takahashi, G. Su, and D. Jia, Experimental study on heat transfer of single-phase flow and boiling two-phase in vertical narrow annuli, in: Proc. of 10th International Conference on Nuclear Engineering 3(2002)319-324.
40. M. Aritomi, T. Miyata, M. Horiguchi, and A. Sudi, Thermo-hydraulics of boiling two-phase flow in high conversion light water reactors (Thermo-hydraulics at low velocities), International Journal of Multiphase Flow 19(1)(1993) 51–63.
41. K. Cornwell and P. A. Kew, Boiling in small parallel channels, in: Proc. of the Internat. Conf. on Energy Efficiency in Process Technology, Elsevier Applied Science, Athens, Greece, 1992, pp. 624-638.
42. M. W. Wambsanss, D. M. France J. A. Jendrzejczyk and T. N. Tran, Boiling heat transfer in a horizontal small-diameter tube, ASME Journal of Heat Transfer 115 (4) (1993) 963-972.
43. Y. Y. Yan and T. F. Lin, Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe, International Journal of Heat and Mass Transfer 41 (24) (1998) 4183-4194.

Flow patterns and bubble characteristics

44. C. H. Sheng and B. Palm, The visualization of boiling in small diameter tubes, in: Proc. of International Conference on Heat Transfer and Transport Phenomena in Microscale, 2000, pp. 204-208.
45. P. C. Lee, F. G. Tseng, and C. Pan, Bubble dynamics in microchannels. Part I: single microchannel. International Journal of Heat and Mass Transfer 47 (2004) 5575-5589.
46. H. Y. Li, F. G. Tseng, and C. Pan, Bubble dynamics in microchannels. Part II: two parallel microchannels. International Journal of Heat and Mass Transfer 47 (2004) 5591-5601.
47. C. Bang, W. P. Baek, and S. H. Chang, A digital photographic study on nucleate boiling in subcooled flow for water and refrigerant 134a fluids, in: Proc. of 10th International Conference on Nuclear Engineering 3(2002)155-162.
48. R. Situ, Y. Mi, M. Ishii, and M. Mori, Photographic study of bubble behaviors in forced convection subcooled boiling, International Journal of Heat and Mass Transfer 47 (2004) 3659-3667.
49. E. L. Bibeau and M. Salcudean, A study of bubble ebullition in forced-convective subcooled nucleate boiling at low pressure, International Journal of Heat and Mass Transfer 37 (15) (1994) 2245-2259.
50. G. E. Thorncroft, J. F. Klausner and R. Mei, An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling, International Journal of Heat and Mass Transfer 41 (23)(1998) 3857-3871.
51. G. E. Thorncroft and J. F. Klausner, The influence of vapor bubble sliding on forced convection boiling heat transfer, ASME Journal of Heat Transfer 121 (1999) 73-79.
52. O. Zeitoun and M. Shoukri, Bubble behavior and mean diameter in subcooled flow boiling, ASME Journal of Heat Transfer 118 (1996) 110-116.
53. J. F. Klausner, R. Mei, D. M. Bernhard, and L. Z. Zeng, Vapor bubble departure in forced convection boiling, International Journal of Heat and Mass Transfer 36(3) (1993) 651-662.
54. L. H. Chien and R. L. Webb, Measurement of bubble dynamics on an enhanced boiling surface, Experimental Thermal and Fluid Science 16 (1998) 177-186.
55. S. R. Yang and R. H. Kim, A Mathematical Model of Pool Boiling Nucleation Site Density in Terms of Surface Characteristics, International Journal of Heat and Mass Transfer 31(1988)1127–1135.
56. R. F. Gaertner, Distribution of Active Sites in the Nucleate Boiling of Liquids, Chem. Eng. Prog., Symp. Ser. 59(1963)52–61.
57. M. Sultan and R. L. Judd, Spatial Distribution of Active Sites and Bubble Flux Density, ASME Journal of Heat Transfer 100(1978)56–62.
58. L. Z. Zeng and J. F. Klausner, Nucleation Site Density in Forced Convection Boiling, ASME Journal of Heat Transfer 115,(1993) 215–221.
59. G.. Kocamustafaogullari and M. Ishii, Interfacial Area and Nucleation Site Density in Boiling Systems, International Journal of Heat and Mass Transfer 26(9)(1983) 1377–1387.
60. N. Basu, G.R. Warrier, and V.K. Dhir, Onset of nucleate boiling and active nucleation site density during subcooled flow boiling, ASME Journal of Heat Transfer 124 (2002) 717–728.

Correlation Equations for Two-phase Flow

61. J. C. Chen, A correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Engng. Chem. Proc. Des. Dev. 5(1966) 322-329.
62. F. W. Dittus and L. M. K. Boelter, Heat transfer in automobile radiator of the tube type, Publication in Engineering, University of California, Berkley, 2(1930) 250.
63. K. E. Gungor and R. H. S. Winterton, A general correlation for flow boiling in tubes and annuli, International Journal of Heat and Mass Transfer 29 (1986) 351-358.
64. M. M. Shah, Chart correlation for saturated boiling heat transfer: equations and further study, ASHRAE Transactions 88(1982) 185-196.
65. S. G. Kandlikar, A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes, ASME Journal of Heat Transfer 112 (1990) 219-228.
66. Z. Liu and R. H. S. Winterton, A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation, International Journal of Heat and Mass Transfer 34 (1991) 2759-2766.
67. M. M. Shah, Generalized prediction of heat transfer during subcooled boiling in annuli, Heat Transfer Engineering 4 (1983) 24-31.
68. S. G. Kandlikar, Development of a flow boiling map for subcooled and saturated flow boiling of different fluids inside circular tubes, ASME Journal of Heat Transfer 113 (1991) 190-200.

Else References
69. S. J. Kline, F. A. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75 (1) (1953) 3-12.
70. V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, International Chemical Engineering 16 (2) (1976) 359-368.
71. S.B. Choi, R.F. Barron, and R.O. Warrington, Fluid flow and heat transfer in microtubes, Micromech. Sensors Actuat. Syst. ASME DSC 32 (1991) 123–134.
72. M. Ciampi, S. Faggiani, W. Grassi, and G. Tuoni, Mixed convection heat transfer in horizontal, concentric annuli for transitional flow conditions, International Journal of Heat and Mass Transfer 30 (1987) 833-841.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top