|
1. Almasi, G. and Gottlieb, A., “Highly Parallel Computing,” Benjamin/Cummings, Red-Wood city, CA, 2nd Editon 1989. 2. Bowen, W.R. and Sharif, A.O., “Long-range electrostatic attraction between like-charge spheres in a charged pore,” Nature, Vol.393, pp.663-665, 1998. 3. Bowen, W.R. and Sharif, A.O., “Adaptive finite-element solution of the nonlinear Poisson-Boltzmann equation: A. charged spherical particle at various distances from a charged cylindrical pore in a charged planar surface,” Journal Colloid Interface Sci., Vol.187, pp.363-374, 1997. 4. Brackbill, JU, “An adaptive grid with direction control,” Journal of Computational Physics, Vol.108, pp.38–50, 1993. 5. Baker, N., Holst, M. and Wang, F., “Adaptive multilevel finite element solution of the Poisson-Boltzmann equation II. Refinement at solvent-accessible surfaces in biomolecular systems,” Journal of Computational Chemistry, Vol.21, pp. 1343-1352, 2000. 6. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. and McCammon, J. A., “Electrostatics of nanosystems: Application to microtubules and the ribosome,” Proceedings of the National Academy of Sciences of the United States of America, 98, pp.10037-10041, 2001a. 7. Baker, N., Sept, D., Holst, M. and McCammon, J. A.,"The adaptive multilevel finite element solution of the Poisson-Boltzmann Equation on massively parallel computers," IBM Journal of Research and Development, Vol.45, No.3/4, page 427, 2001b. 8. Balls, G. T. and Colella, P., “A Finite Difference Domain Decomposition Method Using Local Corrections for the Solution of Poisson's Equation, Journal of Computational Physics, Vol.180, pp.25-53, 2002. 9. Bank, R. E. and Holst, M., “A new paradigm for parallel adaptive meshing algorithms,” Siam Journal on Scientific Computing, Vol.22, pp.1411-1443, 2000. 10. Carnie, S. L., Chen, D. Y. C., and Stankovich, J., "Computation of forces between spherical colloidal particles: Nonlinear Poisson-Boltzmann Theory," Journal of Colloid and Interface Science, Vol.165, pp.116-128, 1994. 11. Cortis, C. M. and Friesner, R. A., “An automatic three-dimensional finite element mesh generation system for the Poisson-Boltzmann equation,” Journal of Computational Chemistry, Vol.18, pp.1570-1590, 1997a. 12. Cortis, C. M. and Friesner, R. A., “Numerical solution of the Poisson-Boltzmann equation using tetrahedral finite-element meshes,” Journal of Computational Chemistry, Vol.18, pp.1591-1608, 1997b. 13. Collins, John and Lee, Abraham P., “Microfluidic flow transducer based on the measurement of electrical admittance,” Lab on a Chip, NO.4(1), pp.7-10, 2004. 14. Connell, S.D. and Holms, D.G., “Three-Dimensional Unstructured Adaptive Multigrid Scheme for the Euler Equations,” AIAA Journal, Vol.32, pp.1626-1632, 1994. 15. Chandra, R., Dagum, L., Kohr, D., Maydan, D., J. McDonald, “Parallel programming in OpenMP,” Morgan Kaufmann Publishers, San Francisco, CA, 2000. 16. Das, P.K. and Bhattacharjee, S., “Finite Element Estimation of Electrostatic Double Layer Interaction between Colloidal Particles inside a Rough Cylindrical Capillary: Effect of Charging Behavior,” Colloids and Surface A, Vol.256, pp.91-103, 2005. 17. Dyshlovenko, Pavel, “Adaptive Mesh Enrichment for the Poisson-Boltzmann Equation,” Journal of Computation Physics, Vol.172, pp.198-208, 2001. 18. Dyshlovenko, Pavel, “Adaptive numerical method for Poisson-Boltzmann equation and its application,” Computer Physics Communications, Vol.147, pp.335-338, 2002. 19. Fogolari, Federico, Zuccato, Pierfrancesco, Esposito Gennaro and Viglino, Paolo, "Biomolecular Electrostatics with the Linearized Poisson-Boltzmann Equation," Biophysical Journal, Vol.76, pp.1-16, 1999. 20. Gilson, M. K., Davis, M. E., Luty, B. A. and McCammon, J. A., "Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation," Journal of Physical Chemistry, Vol.97, pp.3591–3600, 1993. 21. Gowda, Shivaraju B. “A Comparison of Sparse & Element-by-Element Storage Schemes on The Efficiency of Parallel Conjugate Gradient Iterative Methods for Finite Element Analysis”, MS thesis, Graduate School of Clemeson University, 2002. 22. Hunter, R. J., “Foundations of Colloid Science,” Vol.2, Oxford: Clarendon Press, 1989. 23. Holst, M., Baker, N. and Wang ,F., “Adaptive multilevel finite element solution of the Poisson-Boltzmann equation I. Algorithms and examples, Journal of Computational Chemistry, Vol.21, pp.1319-1342, 2000. 24. Holst, M., Kozack, R. E., Saied, F. and Subramaniam, S., “Protein electrostatics: rapid multigrid-based Newton algorithm for solution of the full nonlinear Poisson-Boltzmann equation,” Journal of Biomolecular Structure and Dynamics, Vol.11, pp.1437-45, 1994a. 25. Holst, M., Kozack, R. E., Saied, F. and Subramaniam, S., “Treatment of electrostatic effects in proteins: multigrid-based Newton iterative method for solution of the full nonlinear Poisson-Boltzmann equation,” Proteins, Vol.18, pp. 231-45, 1994b. 26. Hoskin, N. E., "The interaction of two identical spherical colloidal particles I-- Potential Distribution," Proceedings of the Royal Society (London), Series A, 248, pp.433-448, 1956. 27. Hestenes, M. and Stiefel E. ,"Methods of Conjugate Gradient for Solving Linear Systems," Journal of research of the National Bureau of Standards, Vol.49, pp.409-439, 1952. 28. Harries, Daniel, "Solving the Poisson-Boltzmann Equation for Two Parallel Cylinders," Langmuir, Vol.14, pp.3149-3152, 1998. 29. Wu, Fu-Yuan, "The Three-Dimensional Direct Simulation Monte Carlo Method Using Unstructured Adaptive Mesh and It Applications," MS Thesis, NCTU, Hsinchu, Taiwan , July, 2002. 30. Hsu, K.-H., “Development of a Parallelized PIC-FEM Code Using a Three-Dimensional Unstructured Mesh and Its Applications,” PhD Thesis, NCTU, Hsinchu, Taiwan, July, 2006. 31. Kuo, Chia-Hao, "The Direct Simulation Monte Carlo Method Using Unstructured Adaptive Mesh and Its Applications," MS Thesis, NCTU, Hsinchu, Taiwan, June, 2000. 32. Kozack, R. E. and Subramaniam, S., “Brownian dynamics simulations of molecular recognition in an antibody-antigen system,” Protein Science, Vol.2, pp.915-926, 1993. 33. Kallinderis, Y. and Vijayan, P., “Adaptive Refinement-Coarsening Scheme for Three-Dimensional Unstructured Meshes”, AIAA JOURNAL, Vol.31, No.8, 1993. 34. Karypis, G., Kumar, V., ParMETIS 3.1: An MPI-based Parallel Library for Partitioning Unstructured Graphs, Meshes, and Computing Fill-Reducing Orderings of Sparse matrices, 2003. Available from (http://www-users.cs.umn.edu/~karypis/metis/parmetis). 35. Larsen, A.E. and Grier, D.G., “Like-charge attractions in metastable colloidal crystallites,” Nature, Vol.385, pp.230-233, 1997. 36. Lian, Y.-Y., Hsu, K.-H., Shao, Y.-L., Lee ,Y.-M., Jeng, Y.-W. and Wu, J.-S.,“Parallel Adaptive Mesh-Refining Scheme on Three-dimensional Unstructured Mesh and Its Applications,” Computer Physics Communications (Accepted in May 2006). 37. Mackenzie, J. A. and Robertson, M. L., “A moving mesh method for the solution of the one-dimensional phase-field equations,” Journal of Computational Physics, Vol.181, pp.526–544, 2002. 38. MacNeice, P., Olsonb, K.M., C. Mobarry, R. de Fainchtein, Packer, Charles, Computer Physics Communications, Vol.126, pp.330, 2000. 39. MPI library, http://www-unix.mcs.anl.gov/mpi 40. METIS library, http://glaros.dtc.umn.edu/gkhome/views/metis 41. MANIFOLD CODE http://www.scicomp.ucsd.edu/~mholst/codes/mc 42. Nadeem, S A and Jimack, P K, “Parallel implementation of an optimal two level additive Schwarz preconditioner for the 3-D finite element solution of elliptic partial differential equations,” International Journal for Numerical Methods in Fluids, Vol.40, pp.1571, 2002. 43. Norton, C.D., Lou, J.Z. and Cwik, T., “Status and Directions for the PYRAMID Parallel Unstructured AMR Library,” Proceedings of the 15th International Parallel & Distributed Processing Symposium, IEEE Computer Society, Washington, DC, 2001. 44. Neu, J.C., "Wall-Mediated Forces between Like-Charged Bodies in an Electrolyte," Physical Review Letters, Vol.82, pp.1072-1074, 1999. 45. Oliker, L., Biswas, R., Gabow, H.N., “Parallel Tetrahedral Mesh Adaptation with Dynamic Load Balancing.,” Parallel Computing Journal, Vol.26, pp.1583-1608, 2000. 46. Okubo, T. and Aotani, S., “Microscopic observation of ordered colloids in sedimentation equilibrium and the importance of the Debye-screening length. 9. Compressed crystals of giant colloidal spheres,” Colloid & Polymer Science, Vol.266, No.11, pp.1042-1048, 1988. 47. Peano, A .G.., “Hierarchies of Conforming Finite Elements for Plane Elasticity and Plate Bending,” Journal of Computers and Mathematics with Applications, Vol.2, pp.211-224, 1976. 48. Pao, C. V., "Block monotone iterative methods for numerical solutions of nonlinear elliptic equations," Numerische Mathematik, Vol.72, pp.239-262, 1995. 49. Prof. F.-N. Hwang, http://www.math.ncu.edu.tw/~hwangf 50. Quddus, N., Bhattacharjee, S. and Moussa, W., “An Electrostatic–Peristaltic Colloidal Micropump: A Finite Element Analysis,” Journal of Computational and Theoretical Nanoscience, Vol.1, No.4, pp.438-444, 2004. 51. Rausch, R.D., Batina, J.T. and Yang, H.T.Y., "Spatial Adaption Procedures on Unstrutuctured Meshes for Accurate Unsteady Aerodynamics Flow Computation," AIAA Paper, No.91-1106-CP, 1991. 52. Russel, W. B., Saville, D. A., and Schowalter, W. R., “Colloidal Dispersions,” Cambridge Univ. Press, Cambridge, England, 1989. 53. Shao, Z., Ren, C. L. and Schneider, G. E., “3D Electrokinetic Flow Structure of Solution Displacement in Microchannels for on-Chip Sample Preparation Applications”, Journal of Micromechanics and Microengineering, Vol.16, pp.589-600, 2006. 54. Sharp, K. A. and Honig, B., "Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation," Journal of Physical Chemistry, Vol.94, pp.7684-7692, 1990. 55. Squires, Todd M. and Brenner, Michael P., “Like-Charge Attraction and Hydrodynamic Interaction,” Physical Review Letters, Vol.85, pp.4976-4979, 2000. 56. Saad, Yousef, “Iterative Method for Sparse Linear System,” Society for Industrial and Applied Mathematics, 2003. 57. Tuinier, R., “Approximate solutions to the Poisson-Boltzmann equation in spherical and cylindrical geometry,” Journal of Colloid and Interface Science, Vol.258, pp.45-49, 2003. 58. Thompson, Erik G., "Introduction to the Finite Element Method: Theory, Programming and Applications," John Wiley & Sons Inc, 2003. 59. Waltz, J., “Parallel adaptive refinement for unsteady flow calculations on 3D unstructured grids,” International Journal for Numerical Methods in Fluids, Vol.46, pp.37-57, 2004. 60. Wang, L. and Harvey, J.K., “The Application of Adaptive Unstructured Grid Technique to the Computation of Rarefied Hypersonic Flows Using the DSMC Method,” 19th International Symposium on Rarefied Gas Dynamics, Harvey J, Lord G (ed.), pp.843, 1994. 61. Wu, J.-S., Tseng, K.-C. and Wu, F.-Y., “Three Dimensional Direct Simulation Monte Carlo Method Using Unstructured Adaptive Mesh and Variable Time Step,” Computer Physics Communications, Vol. 162, No. 3, pp.166-187, 2004. 62. Wu, Fu-Yuan, "The Three-Dimensional Direct Simulation Monte Carlo Method Using Unstructured Adaptive Mesh and It Applications," MS Thesis, NCTU, Hsinchu, Taiwan, July, 2002. 63. Yang, R.-J., Fu, L.-M. and Lin, Y.-C., “Electroosmotic Flow in Microchannels,” Journal of Colloid and Interface Science, Vol.239, pp.98-105, 2001. 64. Zienkiewicz, O. C., J. P. de S. R. Gago and Kelly, D. W., “The Hierarchical Concept in Finite Element Analysis,” Computers and Structures, Vol.16, No.1-4, pp.53-65, 1983. 65. Zienkiewicz, O.C. and Zhu, J.Z., “A Simple Error Estimator And Adaptive Procedure For Practical Engineering Analysis,” International Journal for Numerical Methods in Engineering, Vol.24, pp.337-357, 1987. 66. Zienkiewicz, O.C. and Taylor, R.L., “The Finite Element Method,” Butterworth-Heinemann, Oxford, 5th edition, 2000.
|