跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/26 23:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許齡元
研究生(外文):lingyuan, Hsu
論文名稱:運用狀態觀察器技術之車輛翻覆預測系統
論文名稱(外文):Vehicle rollover prediction system using states observers
指導教授:陳宗麟陳宗麟引用關係
指導教授(外文):tsunglin, Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:70
中文關鍵詞:車輛翻覆狀態觀察器動態估測動態預測完整車輛模型道路狀況協方差矩陣切換式運算機制分離式橫擺-側傾模型
外文關鍵詞:vehicle rolloverstates observerdynamics estimationdynamics predictionfull-car modelroad conditioncovariance matrixswitching computation schemeseparated yaw-roll model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們提出了一個車輛翻覆預測系統。此一系統主要是以含有道路狀況之"完整車輛模型"為出發點,藉由狀態觀察器技術來獲得車輛即時動態,並且將即時動態傳輸至車輛模型中,來預測在未來時間內的車輛動態,進而以在未來時間內的車輛側傾角,判斷車輛是否即將翻覆。此種預測方法能應用於各種不同動態的車型,並提供可靠的物理根據來宣告車輛翻覆事件。
此預測系統的挑戰之一為如何建立以完整車輛模型(高階、高度非線性系統)為基礎之狀態觀察器。我們提出一適用於非線性系統之新型觀察矩陣,藉由此觀察矩陣來簡化完整車輛模型,並拆解成兩個低階子模型:側傾、橫擺子模型。如此一來,即可針對兩低階子模型分別建立狀態觀察器,再經由相似於傳統ADI(Alternative Direction Implicit)之切換式數值演算法,來進行車輛即時動態估測。由本論文中的ADI-like切換式演算機制之收斂穩定度分析中可知,此演算機制能成功的使兩個從複雜系統中解析出之子系統,近似於原複雜系統之動態行為。
由模擬結果得知,當車輛在一斜坡上做快速轉彎之操作行為下,上述之觀察器演算機制可藉由三種感測器:縱向速度感測器、側向加速度感測器以及懸掛系統位移感測器,來正確地預測出車輛翻覆之發生。
In this thesis, we present a vehicle rollover prediction method, which employs the “full-car model” accompanied with road conditions and states observer techniques, to predict vehicle dynamics and declare a rollover happening by the vehicle roll angle in future time. This prediction method presents a strong evidence for a rollover occurrence, and the methodology can be widely applied to vehicles with different dynamic characteristics.
Based on the novel observability matrix proposed in this thesis, the “full-car model” is broken down into two subsystems. Two states observers are constructed for each subsystem respectively and do the switching scheme for the vehicle states estimation, which the approach is similar to the conventional alternative direction implicit method (ADI). The proposed ADI-like computation scheme enables a states observer design for a highly nonlinear and high order dynamic system.
Simulation results indicate that, with the following three sensors: longitudinal velocity sensor, lateral accelerometer and suspension displacement sensor, we are able to predict a vehicle rollover occurrence correctly, which is initiated by a quick wheels maneuvering on a slope.
摘 要 i
Abstract ii
Acknowledgement iii
Contents iv
List of Tables vi
List of Figures vii
Mathematical Notations viii
Chapter 1 Introduction 1
1.1 Motivations and Objectives 1
1.2 Previous Research Survey 2
1.2.1 Dynamic Modeling of Full-State Vehicle 2
1.2.2 Prediction Method in Vehicle Rollover 2
1.2.3 Neglect of the Vehicle Pitch Motion 3
1.2.4 Numerical Algorithm in Switching Scheme 3
1.3 Construction of this Vehicle Rollover Prediction System 4
1.4 Outline of this Thesis 4
Chapter 2 Full-Car Model 6
2.1 Dynamic Frames of the Vehicle 7
2.1.1 Euler Transformation 7
2.2 Sprung Mass System 10
2.2.1 Vehicle Rotational Motion 10
2.2.2 Vehicle Translational Motion 17
2.3 Unsprung Mass System 19
2.3.1 Wheel Steering System 19
2.3.2 Suspension Force 20
2.3.3 Nonlinear Tire Model 22
2.3.4 Wheel Dynamics 24
2.4 Road Condition 25
2.5 Summary 27
2.6 Full-Car Model Validation 28
2.7 Conclusions 28
Chapter 3 System Observability of Full-Car Model 30
3.1 Nonlinear Observability Matrix 30
3.2 Novel Observability Matrix along a Trajectory 31
3.3 Negligence of Pitch Motions 31
3.4 Integrated Yaw-Roll Model 32
Chapter 4 Vehicle Rollover Prediction System 34
4.1 Separated Yaw-Roll Model 34
4.1.1 Vehicle Yaw Model 35
4.1.2 Vehicle Roll Model 36
4.1.3 Separated Yaw-Roll Model Validation 39
4.2 Switching Observer Scheme 39
4.2.1 Error Source 40
4.2.2 Preliminaries for the Stability Analysis of Switching Computation Scheme 40
4.2.3 Stability Analysis for “Explicit Euler Method” Approximation 41
4.2.4 Stability Analysis for “Runge-Kutta Method” Approximation 44
4.3 Sensor Selections 48
4.3.1 Sensors for Yaw Model 49
4.3.2 Sensors for Roll Model 51
4.4 Nonlinear Observer Algorithm 51
4.5 Block Diagram for the Prediction System 52
Chapter 5 Simulation and Results 53
5.1 Case I 54
5.2 Case II 54
5.3 Case III 54
5.4 Case IV 57
5.5 Case V 57
5.6 Conclusions 59
Chapter 6 Conclusions and Future Works 60
6.1 Conclusions 60
6.2 Future Works 62
Reference 64
Appendix 67
A. The Separation of the Integrated Yaw-Roll Model from Euler Transformation 67
B. Parameters of the Full-Car Model 67
B.1 Vehicle Inertial and Geometric Parameters 68
B.2 Suspension Coefficients 68
B.3 Tire Geometric and Experiential Parameters 69
[1] Acarman T. and Ozguner U., “Rollover prevention for heavy trucks using frequency shaped sliding mode control,” Proceedings of IEEE Conference on Control Applications, Vol. 1, pp. 7 – 12, 2003.
[2] Allen, R. W., Theodore J. R., David H. K. and Jeffrey P. C., "Vehicle and tire modeling for dynamic analysis and real-time simulation," Society of Automotive Engineers Automotive Dynamics and Stability Conference, SAE Paper No. 2000-01-1620, May 2000.
[3] Bar-Shalom Y. , Li X. R. and Kirubarajan T., Estimation with Applications to Tracking and Navigation, Wiley-Interscience, 2001.
[4] Chen B. and Peng H., "A real-time rollover threat index for Sports Utility Vehicles," Proceedings of the American Control Conference, pp. 1233-1237, June 1999.
[5] Chen C.-T., Linear System Theory and Design, Library of Congress Cataloging in Publication Data, 1984.
[6] Day T. D., “Validation of the EDVSM 3-dimentional vehicle simulator,” Society of Automotive Engineers International Congress and Exposition, SAE Paper No. 970958, February 1997.
[7] Feng K. T., “Vehicle lateral control for driver assistance and automated driving,” Ph.D. Thesis, Department of Mechanical Engineering, University of California, Berkeley, 2000.
[8] Grewal M. S. and Andrews A. P., Kalman Filtering : Theory and Practice Using Matlab, Wiley-Interscience, 2001.
[9] Grzywna J. W., Ivano N. M., Schwartz E. M. and Arroyo A. A., “KELVIN: A second generation land vehicle,” Proceedings of the Conference on Recent Advances in Robotics, May 2002.
[10] Hac A., Brown T. D. and Martens J. D., “Detection of vehicle rollover,” Proceedings of the SAE World Congress and Exhibition, SAE Paper No. 2004-01-1757, March 2004.
[11] Hahn J. and Edgar T. F., “Nonlinearity quantification and model classification using gramians and other covariance matrices,” Proceedings of the AIChE 2001 Annual Meeting, Reno, 2001.
[12] Hauth M., “Numerical techniques for cloth simulation”, Clothing Simulation and Animation, in: ACM SIGGRAPH Course 29, 2003.
[13] Hingwe P., “Robustness and performance issues in the lateral control of vehicle in automated highway system,” Ph. D. Thesis, Department of Mechanical Engineering, University of California, Berkeley, 1997.
[14] Hundsdorfer W. H. and Verwer J. G., “Stability and convergence of the Peaceman-Rachford ADI method for initial-boundary value problems,” Mathematics of Computation, Vol. 53, Num. 187, pp. 81-101, July 1989.
[15] Pacejka H. B. and Besselink I. J. M., “Magic formula tyre model with transient properties,” Vehicle System Dynamics Supplement, Vol. 27, pp. 234-249, 1997.
[16] Pacejka H. B. and Bakker E., “The magic formula tyre model,” Vehicle System Dynamics Supplement, Vol. 21, pp. 1-18, 1993.
[17] Porcel, A., Laurence, P., Basset, M. and Gissinger, G. L., “Tyre model for vehicle simulation: Overview and real time solution for critical situations,” Proceedings of the IEEE International Conference on Control Applications, pp. 817-822, September 2001.
[18] Rogers S. and Wenbing Z., “Development and evaluation of a curve rollover warning system for trucks,” Proceedings of IEEE on Intelligent Vehicles Symposium, pp. 294 – 297, 2003.
[19] Ryu J. and Gerdes J. C., “Integrating inertial sensors with GPS for vehicle dynamics control,” ASME Journal of Dynamic Systems on Measurement and Control, June 2004.
[20] Ryu J. and Gerdes J. C., “Estimation of vehicle roll and road bank angle,” Proceedings of the American Control Conference, 2004.
[21] Sanchez E.N., Ricalde L.J., Langari R. and Shahmirzadi D., “Recurrent neural control for rollover prevention on heavy vehicles,” Proceedings of IEEE International Joint Conference on Neural Networks, Vol. 3, pp. 1841-1846, July 2004.
[22] Scholpp G., Schmidt J., Hofmann R., Friberger M. and Wolf F., “Influences of parameters at vehicle rollover”, Proceedings of the International Body Engineering Conference and Exposition, SAE. Paper No. 2000-01-2669, October 2000.
[23] Schubert P. J., Nichols D., Wallner E., Kong H. and Schiffmann J., “Electronics and algorithms for rollover sensing,” Proceedings of the SAE World Congress and Exhibition, SAE Paper No. 2004-01-0343, March 2004.
[24] Singh A. K. and Hahn J., “Determining optimal sensor location for state and parameter estimation for stable nonlinear system,” Industrial an Engineering Chemical Research, Vol. 44, pp. 5645-5659, 2005.
[25] Stetter H. J., Analysis of Discretization Methods for Ordinary Differential Equations, Springer-Verlag Berlin Heidelberg, New York, 1973.
[26] Takano S. and Nagai M., “Dynamics control of large vehicle for rollover prevention,” Proceedings of the IEEE International Vehicle Electronics Conference, pp. 85-89, September 2001.
[27] Travis W. E., Whitehead R. J., Bevly D. M., and Flowers G. T., “Using scaled vehicles to investigate the influence of various properties on rollover propensity,” Proceedings of the American Control Conference, pp. 3381-3386, 2004.
[28] Trent V. and Greene M., “A genetic algorithm predictor for vehicular rollover,” IECON02, Vol. 3, pp. 1752-1756, 2002.
[29] Ungoren A. Y., Peng H. and Milot D., “Rollover propensity evaluation of an SUV equipped with a TRW VSC system,” Society of Automotive Engineers Congress and Exposition, SAE Paper No. 2001-01-0128, 2001.
[30] Vidyasagar M., Nonlinear Systems Analysis, Prentice Hall, New Jersey, 1993.
[31] Whitehead R., Travis W., Bevly D. M., and Flowers G., “A study of the effect of various vehicle properties on rollover property,” Proceedings of the Automotive Dynamics and Stability Conference and Exhibition, SAE Paper No. 2004-01-2094, May 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top