跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉懋勳
研究生(外文):Mao-Shiun Liu
論文名稱:橢圓微型模穴之微液體填充研究
論文名稱(外文):Analysis on Filling Process in Oval Disk-Shaped Micro Chambers of Composite Materials at Different Aslope Angle
指導教授:林振德林振德引用關係
指導教授(外文):Jenn-Der Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:110
中文關鍵詞:微流體微粒子影像測速法
外文關鍵詞:micro fluidicPIVPDMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之研究目的在於製作橢圓模穴為主之微流體裝置,並藉由實驗觀測表面張力、附著力、慣性力對液體填充過程中之影響。實驗中,流道製作方式有二,一為PDMS翻模而成,另一為以MEMS技術於晶圓上蝕刻流道;根據偉伯數的變化、模穴大小、模穴旋轉角、改變橢圓模穴壁面材質和化學處理改變壁面性質,探討波前與其流動現象,並且使用微粒子影像測速法(PIV)重現會包圍氣泡模穴填充過程之速度,藉以釐清會發生包圍氣泡前後實際流動狀態。
實驗結果顯示,容易在模穴產生氣泡包覆現象之情況如下:
1.偉伯數相同,橢圓模穴旋轉後,越靠近進口流道時。2.橢圓模穴旋轉角相同的,偉伯數越高時。3.偉伯數相同,PDMS模穴以PDMS材質封裝比以玻璃封裝時更易包覆氣泡。4.偉伯數及模穴材質相同,相同面積但形狀較寬闊的模穴。另外在微粒子影像測速法過程中發現在彎角大的模穴中,因為進口慣性力被表面張力抵銷後,速度向量會在波前呈現均勻的分佈,導致填充時液面不足以到達模穴角落填充,造成最後的包覆氣泡現象。
另本研究中,尚有以化學處理法處理,改變已封裝好之模穴內部親疏水性。針對PDMS模穴而言,實驗中的氧電漿再處理法、界面離子活性劑處理法,均會使原本是疏水性質的模穴內壁轉變為較親水。研究結果顯示,能使模穴內變親水的效果,氧電漿再處理法最佳、HEMA處理法最差。針對silicon材料的流道而言,通入等向性蝕刻液TMAH後,能再度蝕刻模穴底面,因為模穴內部非平滑表面,所以比較蝕刻處理前的模穴、處理15分鐘的模穴、處理30分鐘的模穴的填充結果,因模穴底部表面型態的變化,會出現疏水、親水、相對疏水的現象。
The purpose of this thesis is to manufacture oval disk-shaped micro fluidic device for observation and also to examine the effect of surface tension, adhesive and inertial force in the filling process. Two methods to manufacture micro channels and micro chambers in this experiment are PDMS molding process and MEMS technology fabricating on the wafer. The liquid filling process is analyzed at variance value the Weber number, size of the chambers, aslope angle of the chambers, associated with the changes in materials of the walls of the micro chambers, and the chemical changes in processing. Furthermore, in order to clarify the actual circumstance of flowing before bubble entrapped and after, PIV is adopted in this experiment for reconstructing the speed distribution of filling in the bubble-entrapped chambers.
The result of the experiment shows some circumstances when bubble entrapment occurred:
1. With the same Weber number, the degree between the chambers and the inlet channel decreased.
2. With the same degree between the chamber and the inlet channel, the Weber number increased.
3. The PDMS micro chambers package with PDMS sheet was easier than that with glass sheet.
4. With the same Weber number and the same property of the wall in the chamber, the superficies of the chamber was equivalent but the shape of the chamber was different.
In addition, inertia in the inlet channel was offset by the surface tension in big curve chambers, and the speed quantities would spread evenly in the front shapes. Consequently, front shapes failed for reaching chamber corners and filling, and bubble entrapment occurred.
Chemical treatment is also used to change the hydrophilic and hydrophobic quality inside the packaged chambers in this experiment. In regard to PDMS chambers, surfactant and treatment O2 plasma for the second time changed the hydrophobic chamber walls into somewhat hydrophilic. Moreover, to make chamber walls become hydrophilic, treatment O2 plasma is better than treatment HEMA in comparison with treatment HEMA in references. In regard to silicon channel, pouring TMAH would etch the bottom of the chambers once more. Inside the chambers was not smooth; when comparing the chamber walls used treatment TMAH for 15minutes and 30minutes with those had not used treatment TMAH, different filling phenomenon would appear while pouring water in chambers.
摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
符號表 xvii
第一章 緒論 1
1.1背景 1
1.2文獻回顧 1
1.3研究目的 5
第二章 實驗原理與微流道製程設計 6
2.1實驗原理 6
2.1.1內聚力、表面張力、潤濕性與毛細作用力概念 6
2.1.2微粒子影像測速法基本量測原理 7
2.1.3接觸角 8
2.2微流道製程設計 9
2.2.1微流道設計 9
2.2.2微流道製程 10
第三章 觀測系統與步驟 15
3.1系統架設及操作步驟 15
3.2實驗項目暨觀測步驟 20
第四章 結果與討論 22
4.1靜態接觸角量測結果 22
4.1.1 PDMS材質 22
4.1.2 Silicon材質 23
4.2 PDMS流道填充過程 23
4.3 PDMS模穴表面改質後之填充過程 29
4.4 TMAH處理Silicon流道後填充過程 30
第五章 結論 32
5.1接觸角 32
5.2 PDMS-PDMS模穴與PDMS-GLASS模穴填充過程 33
5.3 改變PDMS模穴壁面親疏水性質 36
5.4 TMAH處理silicon流道後之填充過程 36
參考文獻 38
[1] 張志誠,微機電技術,商周出版社,台北市,2002.
[2] T. R. Hsu, MEMS and Microsystem: design and manufacture, McGraw-Hill, 2002.
[3] N. Schwesinger, T. Frank, H. Wurmus, “A Modular Microfluid System with An Integrated Micromixer,” J. Micromech. Microengr., Vol.6, 99-102, 1996.
[4] W.Ehrfeld, K.Gebauer, V.Hessel, H. Lowe, T.Richer,”Characteriz -ation of Mixing in Micromixers by a Test Reaction by a Test Reaction: Single Mixing Unit and Mixer Arrays,” Ind Eng. Chem. Res, Vol.37, 1075-1082, 1999.
[5] J. T. Groves, N. Ulman, S.G. Boxer, “Micropatterning of Fluid Lipid Bilay on Solid Supports,” Science Vol. 275,651-653,1997.
[6] J. K. Jun and K. C. Jin, “Valveless Pumping Using Traversing Vapor Bubble in Microchannels,” J. Applied Physics, Vol.83, No.11, 5658- 5664, 1998.
[7] M. A. Northrup, M. T. Ching, R. M. White, and R.T. Lawton, “DNA Amplification with A Microfabricated Reaction Chamber,” International Conference on Solid-State Sensors and Actuators (Transducers 93), Yokohama, Japan, June 7-10, 924-926, 1993.
[8] J. Bico and D. Quere, “Liquide Trains in A Tube,” Europhy. Lett., Vol.51, 546-550, 2000.
[9] O. E. Jensen,”The Thin Liquid Lining of A Weakly Curved Cylinderical Tube,” J. Fluid Mech., Vol.331,373-403,1997.
[10]V.D. Sobolev, “Surface Tension and Dynamic Contact Angle of Water in Thin Quartz Capillaries, “ J. Colloid and Interface, Vol.222, 51-54, 2000.
[11] S.E Navti, K. Ravindran, C. Taylor, R. W. Lewis,”Finite Element Modeling of Surface Tension Effects Using a Lagrangian-Eulerian Kinematic Description,” Comput. Methoda Appl.Mech. Engrg., Vol. 147, 41-60, 1997.
[12] Y. Lee, J.K. Kim, S. Chung, C. Chung, J. K. Chang, J.Y. Yoo, “Flow Charecteristics of Hydrophilic/Hydrophobic Capillaries consider Surface Tension,” Micro-technologies in Medicine and Biology 2nd Annual International IEEE-EMB Special Topic Conference, 560-564, 2002.
[13] J.J. Chen, W.Z. Liu, J.D. Lin, J.W. Wu,”Analysis of filling of an oval disk- shaped chamber with microfludic flows”, Sensor and Actuator A , Press, 2006.
[14] Kurt E. Petersen, “Silicon as a Mechanical Materal”, Proc. of the IEEE, Vol.70, 420-457, No.5 May 1982.
[15] I. Zubel, M. Kramkowska, “Ecth rates and morphology of silicon (h k l) surface ectched in KOH and KOH Saturated with Isopropanol Solution”,Sensor and Actuators, Vol.115, 549-556, 2004.
[16] Di Cheng, Miguel A, Tatsuya Hori, Kazuo Sato, Mitsuhiro Shikida, “Improvement in smoothness of anisotropically etched silicon surfaces:Effect of surfactant and TMAH concentrations”, Sensors and Actuators A: Physical, Vol.125, 415-421, 2006.
[17 ]A. Chambers, A. Ashraf, “Through Wafer Via Ectching”, Advance Packaging, April 2005.
[18] J.P. Hartnett, W.J. Minkowyez, “Measurements of Heat Transfer in Microchannel Heat Sinks”, International Communications in Heat and Mass Transfer, Vol.27, No.4, 495-506, 2000.
[19] Y.P. Chen, P. Cheng, “Condensation of Steam in Silicon Microchannels”, International Communications in Heat and Mass Transfer, Vol.32, 175-183, 2005.
[20 ]L. Ceriotti, K. Weible, N.F. de Rooij, E. Verpoorte, “Rectangular Channels for lab–on-a-chip applications”, Microelectronic Engineering, Vol. 68, 865-871, 2003.
[21] L. Xie, L. Yobas, H.M. Ji, J. Li, Y. Chen, P. Damaruganath, W.C. Hui, M.K. Iyer,”Disposable Polydimethylsioxane Package for ‘Bio-Nicrofluidic System’”, Electronic Components and Technology, IEEE, 617-621,2005.
[22] S.F. Li, S.C. Chen, “Polydimethylsioxane Fluidic Interconnects for Microfludic Systems”, Part B: Advanced Packaging, IEEE, Vol.26, No.3, 242-247, 2003.
[23]N. Sundararajan, M.S. Pio, L.P. Lee, A.A. Berlin, “Three-Dimens -ional Hydrodynamic Focusing in Polydimethylsiloxane(PDMS) Microchannels”, Journal of Microelectromechanical System, IEEE, Vol.13, 599-567, No.4, 2004.
[24] Dhananjay Bodas, Chantal Khan-Malek, “Formation of more stable hydrophilic surface of PDMS by plasma and chemical treatm- ent”, Press, 2006.
[25] 王亞偉等, 物理, 五南出版社, 台北市, 2001.
[26] 謝曉星, 基本流體力學, 東華出版社, 台北市, 1991.
[27] 劉文忠, “微形圓盤模穴內之微流體流動現象分析,”交通大學機械工程研究所碩士論文, 2002.
[28] 林啟明, “親水性與厭水性聚二甲基矽氧烷表面特性差異”國立台灣大學碩士論文, 2001.
[29] 施昱宏,”表面微結構對靜態接觸角與表面附著現象之研究”交通大學機械工程研究所碩士論文, 2004.
[30] R.J. Adrian, C.D. Meinhart, C.D. Tomkins,”Vortex Organization in The Outer Region of The Turbulent Boundary Layer”, J. Fluid Mech., Vol.422, 1-54, 2000.3
[31] N.T. Nguyen, Z.G. Wu, X.Y. Huang, C.Y. Wen, “The Application of μPIV Technique in The Study of Magnetic Flows in Micro-channel”, Magnetism and Magnetic Materials, Vol.289, 396-398, 2005.
[32] D.C. Tretheway, C.D. Meinhart, “Effect of Absolute Pressure on Fluid Slip in a Hydrophobic Microchannel”, ASME International Mechanical Engineering Congress and Exposition, 2003.
[33] D.M. Curtin, D. T. Newport, M. R. Davies, “Utilising Micro-PIV and pressure measurements to determine the viscosity of a DNA solution in a microchannel”, Expermental Thermal and Fluid Science, Press, 2006.
[34] B.J.Kim, Y.Z.Liu, H.J. Sung, “Micro PIV measurement of two-fiuid flow with different refractive indices”, Meas. Sci. Technol., Vol.15, 1907-1103, 2004.
[35] M. Hoffmann, M. Schluter, N. Rabiger, “Experimental investigation of liquid–liquid mixing in T-shaped micro-mixers using μ-LIF and μ-PIV”, Chemical Engineering Science, Vol.61, 2968-2976, 2006.
[36] S. Devasenathipathy, J.G. Santiago, S.T. Wereley,C.D. Meinhart, K.Takehara, “Particle image techniques for microfabricated fludic system”, Experiment in Fluids, Vol.34, 504-514, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top