跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/21 23:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳和穎
研究生(外文):Ho-Ying Wu
論文名稱:新型含矽氧烷與亞醯胺之四官能基環氧樹脂特性之研究
論文名稱(外文):Study on the Properties of Novel Multifunctional Epoxy Containing Siloxane and Imide Groups
指導教授:林木獅
指導教授(外文):Mu-shin Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:106
中文關鍵詞:矽氧烷亞醯胺四官能基環氧樹脂活化能
外文關鍵詞:MultifunctionalEpoxySiloxaneImideDSCDMATGATMA
相關次數:
  • 被引用被引用:1
  • 點閱點閱:754
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以分子結構設計方式,合成含矽氧烷與亞醯胺之四官能基環氧樹脂Ⅲ。將商用環氧樹脂Tetraglycidyl m-xylenediamine(GA-240)及含矽氧烷與亞醯胺之四官能基環氧樹脂與硬化劑依不同當量比例(1/0/1;0.95/0.05/1;0.9/0.1/1;0.85/0.15/1;0.8/0.2/1)混合並交聯,由這些不同的配方比例研究商用環氧樹脂的改質效果。

以FT-IR研究其交聯行為,以動態DSC探討其動力學,用TGA、TMA、DMA進行熱機械性質分析。研究結果顯示改質後的材料其硬化反應所需之活化能較單純GA-240為低,推測GA-240受四官能基epoxy所含三級胺的催化所致。硬化後材料較為柔韌可能係受到矽氧烷的影響,並且保有相當高的玻璃轉移溫度與良好的熱性質。
This research is devoted to synthesize tetrafunctional epoxy containing siloxane and imide groups (Ⅲ) by way of molecular design. Commercial tetraglycidyl meta-xylenediamine(GA-240)/Ⅲ/MDA in various equivalent ratios of cured to 1/0/1,0.95/0.05/1,0.9/0.1/1,0.85/0.15/1 and 0.8/0.2/1 were mixed and study the property improvement for the commercial epoxy GA-240.

Curing behavior was studied with FT-IR. Kinetics analysis was studied with dynamic DSC. Thermal mechanical properties were measured with TGA,TMA and DMA. Kinetics study indicated that modification of epoxy resins has lower curing activation energy than GA-240 component, presumably catalyzed by the 3。amide meeting in Ⅲ.These cured materials were generally toughened due to the presence of siloxane group in Ⅲ.While they still showed high glass transition temperature and good thermal properties.
英文摘要………………………………………………………………….i
中文摘要…………………………………………………………………ii
誌謝……………………………………………………………………...iii
目錄……………………………………………………………………...iv
表目錄…………………………………………...……...……………...viii
圖目錄……………………………………………………………….…..ix

一、序論…………………………………………………………………1
1-1 半導體封裝簡介…………………………………………………….1
1-2 環氧樹脂…………………………………………………………….5
1-2-1 環氧樹脂介紹…………………..………………………..……...5
1-2-2 環氧樹脂特性…………………………………………………...6
1-2-3 環氧樹脂之硬化………………………………………………...7
1-2-4 環氧樹脂與胺類硬化劑………………………………………...9
1-3 聚亞醯胺簡介…………………………………………………..….11
1-4 矽氧烷簡介………………………………………………………...13
1-5 含矽氧烷之亞醯胺或環氧樹脂相互間補強材料………………...15
1-5-1 含亞醯胺基環氧樹脂相關文獻…………………………….…15
1-5-2 含矽氧烷聚亞醯胺相關文獻………………………………….18
1-5-3 含矽氧烷環氧樹脂相關文獻…………………………...……..20
1-6 四官能基環氧樹脂相關文獻………………………………...……22
1-7 研究動機…………………….……………………………………..26
二、實驗…………………………………………………………………27
2-1藥品與材料…………………………………………………………27
2-1-1 環氧樹脂系統………………………………………………….28
2-2 試藥純化…………………………………………………………...29
2-3 儀器與設備………………………………………………….……..30
2-4 單體合成…………………………………………………………...32
2-5 環氧當量滴定………………………………..…………………….36
2-6 合成化合物鑑定………………………………………………..….38
2-6-1 1H核磁共振光譜…………………………………………..……38
2-6-2 13C核磁共振光譜……………………………………...………..38
2-6-3 紅外線光譜分析……………………………………………….38
2-7 交聯行為分析…………………………………………….………..39
2-7-1 硬化反應配方…………………………………………...……..39
2-7-2 動態DSC分析…………………………………………...……..40
2-7-3 交聯過程的FT-IR分析…………………………………..…….40
2-7-4 交聯樣品製作…………………………………...……………..40
2-8 交聯後材料性質測試……………………………………………...41
2-8-1 微差掃瞄熱卡計(DSC)…………………………………..……41
2-8-2 熱膨脹係數的測試(TMA)…………………………………….41
2-8-3 熱重量分析儀分析(TGA)……………………………….……41
2-8-4 動態機械分析(DMA)…………………………………………41
2-8-5 凝膠分率測試(Gel fraction)…………………………………..42
2-8-6 介電常數的測試……………………………………...………..42
三、結果與討論…………………..……………………………………..43
3-1 合成流程…………………………………...………………………43
3-2 單體之合成與鑑定…………………………….…………………..44
3-2-1 5,5’-(1, 1, 3, 3-tetramethyl-1, 1, 3, 3-disiloxanedialyl)-bis-norbornane-2, 3-dicarboxylic anhydride……….…………..44
3-2-2 N,N’-bis(4-aminophenyl)-5,5’-(1, 1, 3, 3-tetramethyl-1, 1, 3, 3-disiloxanedialyl)-bis-norbornane-2, 3-dicarboximide……....45
3-2-3 N,N,N’,N’-tetraglycidyl-bis(4-aminophenyl)-5.5’-(1, 1, 3, 3-tetramethyl-1, 1, 3, 3-disiloxanedialyl)-bis-norbornane-2, 3-dicarboximide…………………………..……………………..46
3-3 交聯行為探討……………………………………………...………48
3-3-1 動態DSC分析………………………………………………….48
3-3-2 硬化條件…………………………………………………..…...52
3-3-3 硬化過程之紅外線光譜分析……………………………...…..52
3-4 交聯產物性質研究………………………………………………...54
3-4-1 凝膠分率測試………………………………………...………..54
3-4-2 熱膨脹係數分析………………………………...……..………54
3-4-3 熱重損失分析………………………………………………….55
3-4-4 動態機械分析………………………………………………….57
3-4-5 介電常數測試……………………………………………….…59
四、結論……………………………………………………...………….60
五、參考文獻……………………………………………………………61
1. 半導體工業年鑑,May 2004
2. 李宗銘,”新世代半導體構裝技術對封裝材料的技術需求”,工業材料雜誌,175期,July 2001
3. 桓內弘著,賴耿陽譯,”環氧樹脂應用實務”,復漢出版社,1999
4. 林金雀,”全球環氧樹脂市場概況”,化工資訊,July 2000
5. S. S. Lee, S. C. Kim, J. Appl. Polym. Sci. ,69, 1291 (1998)
6. J. Duchet, J. P. pascault Wiley Periodicals, Inc. J Polym Sci Part B:Polym Phys , 41, 2422-2432 (2003)
7. H. Lee, K. Neville, ”Handbook of Epoxy Resins”, 10-16 (1972)
8. 荻本英二 著,陳連春 譯,高密度IC封裝CSP技術,建興出版社 pp. 668 (1998)
9. T. H. Ho, C. S. Wang, Polymer, 37, 2733-2742 (1996)
10. 張鎮城,聚亞醯胺之改質研究,國立清華大學,碩士論文,民國86年
11. S.C. Lin, E.M. Pearce, ”High Performance Thermosets”, Hanser,
New York, 1994
12. K. Sato,S. Haada, T. Saiki, A. T. Okubo, T. Kimura, K. Mukai, IEEE Trans. Parts, Hybrids and Packing, PHP-9, 176, 1973

13. E. M. Yorkgitis, “Siloxane Modified Epoxy Resin”, Advances in Polymer Science, Epoxy Resins and Composites 1,72,80 (1985)
14. J. L. Hedrick, B. Haidae, “Synthesis and Properties of Segmented and
Black Poly(Hydroxy-Epoxy)Resins and Composites 1”, 72 ,80 (1985)
15. J. Tong, J. Apply. Polym. Sci., 52, 1373 (1994)
16. S.T. Lin, Eur. Polym. J., 33, 365 (1997)
17. E. Yilgor, Polym., 39, 1691 (1998)
18. P. A. Martinez, V. Cadiz, A. Mantecon and A. Serra, Angew. Markromol. Chem., 133, 97(1985)
19. P. A. Martinez, V. Cadiz, A. Mantecon and A. Serra, Angew. Markromol. Chem., 138, 185(1986)
20. P. A. Martinez, V. Cadiz, A. Mantecon and A. Serra, Angew. Markromol. Chem., 140, 113(1986)
21. P. A. Martinez, V. Cadiz, A. Mantecon and A. Serra, Angew. Markromol. Chem., 148, 149(1987)
22. J. G. Campa, J. Abajo, A. Mantecon and V. Cadiz, Eur polym. J. ,23, 961(1987)
23. A. Mantecon and V. Cadiz, A. Serra, P. A. Martinez, Eur polym. J. ,23, 481(1987)
24. M. Galia, A. Serra, A. Mantecon and V. Cadiz, J. Appl. Polym. Sci. , 56, 193(1995)
25. M. Galia, A. Serra, A. Mantecon and V. Cadiz, J. Appl. Polym. Sci. , 57, 413(1995)
26. D. Monte, M. Galia, A. Serra, A. Mantecon and V. Cadiz, Macromol. Chem. Phys , 196, 1051(1995)
27.A.Ashok Kumar, M. Alagar, R. M. V. G.. K. Rao, Polym., 43, 693 (2002)
28. A.Ashok Kumar, M. Alagar, R. M. V. G.. K. Rao,J. Appl. Polym. Sci. 81, 2330 (2001)
29. A.Ashok Kumar, M. Alagar, R. M. V. G.. K. Rao,J. Appl. Polym. Sci. 81, 38 (2001)
30. H. S. Ryang, U.S. Patent 1381396(1983)
31. H. S. Ryang, U.S. Patent 4404350(1984)
32. H. S. Ryang, U.S. Patent 14533737(1985)
33. V. J. Eddy and J. E. Hallgren, U.S. Patent 4542226(1985)
34. V. J. Eddy and J. E. Hallgren, J. Org. Chem , 52, 1903(1987)
35. S. A. Swint and M. A. Buese, J. Organmetallic Chem , 402, 145(1991)
36. V. J. Eddy, J. E. Hallgren, R. E. Colborn J. Polym. Sci. Part A, 28, 2417(1990)
37. J. S. Shim, W. Lee, and J. Jang, Polym. Bull., 25, 699(1991)
38. K. Matsukawa, K. Hasegawa., J. Polym. Sci. Part A, 30, 2045 (1992)
39. T. P. Skourlis, R. L. Mccullough, J. Polym. Sci. , 62, 481 (1996)
40. M. C. Lee, J. Appl. Polym. Sci., 62, 217-225 (1996)
41. C. R. Chiang, J. Polym. Sci. Part B, 36, 1805-1819 (1998)
42. W. C. Shih, J. Appl. Polym. Sci., 69, 51-58 (1998)
43. I. Blanco, J. Appl. Polym. Sci., 89, 268-273 (2003)
44. S. J. Park, Materials Science and Engineering A , 347, 109-114 (2004)
45. K. S. Jagadeesh, J. Appl. Polym. Sci., 101, 480-491 (2006)
46. C. P. Reghunadhan Nair, K. Krishnan, K. N. Ninan. Thermochimica acta 2000; 359: pp61-67.
47. T. Ozawa., Journal of Thermal Analysis 1976; 9: pp369-373.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top