跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/12 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅巨澤
研究生(外文):Jiuh-Tzer Luo
論文名稱:高紅光色飽和度Mn4+摻雜螢光體之製備與發光特性鑑定
論文名稱(外文):Highly Saturated Red-Emitting Mn4+-Activated Phosphors:A Luminescence and Chromaticity Investigation
指導教授:陳登銘陳登銘引用關係
指導教授(外文):Teng-Ming Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:100
中文關鍵詞:螢光體
外文關鍵詞:phosphor
相關次數:
  • 被引用被引用:3
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究成功地合成了七種高紅光色飽和度的錳摻雜螢光體,並進行一系列的特性鑑定。其中錳分別取代不同的格位。上述化合物經由XRD晶相鑑定後確認皆不會因為錳摻雜後而改變原本結構。此外,化學分析電子能譜被用以輔助確定2p1/2與2p3/2束縛能值以證明錳的氧化態為+4。
激發光譜分析顯示、在近紫外波段存在兩個明顯的激發帶,其主要源自於4A2→4T1與4A2→4T2能階躍遷。此外放射光譜分析表明620 ~ 700 nm間的放射源自2E→4A2的零聲子躍遷,並伴隨電子振動邊帶所構成。放射光譜並顯示,A,D,F與G螢光體最適當的錳摻雜濃度皆為0.25 mol %,而B與C為1.0 mol %,以及E為0.5 mol %。
錳摻雜螢光體在C.I.E.色度的量測顯示其x座標值在0.72~0.73,y座標值在0.26~0.27的範圍內,整體呈現極為飽和且接近純淨的紅光座標值(0.735,0.265),上述螢光特性突顯錳螢光體具備應用在藍光-近紫外發光二極體轉換光源和醫療光源的潛力。
The discovery and luminescent properties of seven highly saturated red-emitting Mn-activated phosphors are to be described in this thesis. As indicated by the X-ray (XRD) data, Mn was found to substitute for different cation sites. The XRD profiles for both Mn-doped phosphors were found to be in good agreement with those reported in literature. Moreover, the oxidation state of Mn has been confirmed to be 4+ as indicated by core level Mn 2p1/2 and 2p3/2 X-ray photoelectron spectra(XPS) spectra for the Mn4+-activated phosphors.
Furthermore, the comparisons of PLE spectra for the seven Mn4+-activated phosphors reveal that the two excitation bands occuring in near-UV range can be attributed to the 4A2→4T1,2(F) transitions of Mn4+ and the emission was found to be vibronic multiplets attributed to the 2E→4A2 transitions with wavelength ranging from 620 to 700 nm. As indicated by the photoluminescence (PL) spectra, the optimal Mn4+ dopant contents of A, D, F and G were found to be 0.25%, and for B as well as C were found to be 1.0%. Additionally, the optimal Mn4+ dopant contents in E is 0.5%. The C.I.E. chromaticity coordinates of these Mn4+-activated phosphors are exceptionally close to that (i.e., (0.735, 0.265)) of pure red. In summary, as a potential phosphor for white-light LEDs and medical light therapy the Mn4+-activated phosphors showed characteristically purely red emission in the range of 620~700 nm when excited with violet blue radiation.
總 目 錄
頁 次
中文摘要…………………………………………………………… i
英文摘要…………………………………………………………… iii
誌謝………………………………………………………………… v
總目錄……………………………………………………………… vii
表目錄……………………………………………………………… xi
圖目錄……………………………………………………………… xii
第一章 緒論……………………………………………………… 1
第二章 實驗方法………………………………………………… 23
第三章 實驗結果與討論………………………………………… 36
第四章 結論…………………………………………………………… 97
表目錄
頁 次
第一章 緒論…………………………………………………………… 1
第三章 實驗結果與討論……………………………………………… 36
圖目錄
頁 次
第一章 緒論…………………………………………………………… 1
第二章 實驗方法……………………………………………………… 23
[1] 許榮宗著,”工業材料雜誌”,白光LED製作技術走勢,工業材料研究所,民國94年。
[2] T. Murata, T. Tanoue, M. Iwasaki, K. Morinaga and T. Hase, J. Lumin., 114, 207 (2005).
[3] R. B King, “Encyclopedia of Inorganic Chemistry”, 4, John Wiley&Sons (1994).
[4] G. Blasse and A. Bril, J. Electrochem. Soc., 115, 1067 (1968).
[5] G. Blasse and B. C. Grabmaier, “Luminescent Materials”, Springer-Verlag, Berlin Heidelberg, Germany (1994).
[6] 水野博之著,”光電工學的基礎”,第五章,復漢出版社,民國82年。
[7] R. C. Ropp, “Luminescence and the Solid State”, p.344, Elsevier Science Publisher, B. V., The Netherlands(1991)
[8] F. E. Williams, J. Opt. Soc. Am., 37, 302 (1947).
[9] S. H. Patten and F. E. Williams, J. Opt. Soc. Am., 39, 702 (1949).
[10] F. A. Kroeger and J. Van Den Boomgaard, J. Electrochem. Soc., 97, 377 (1950).
[11] F. A. Kroger, TH. P. J. Botden and P. Zalm, Physica., 18, 33 (1952).
[12] G. Kemeny and C. H. Haake, J. Chem. Phys., 33, 783 (1960).
[13] L. A. Riseberg, M. J. Weber, Solid State Commun, 9, 791 (1971).
[14] A. Bergstein and W. B. White, J. Electrochem. Soc., 118, 1166 (1971).
[15] E. Kostiner and P. W. Bless, J. Electrochem. Soc., 119, 548 (1972).
[16] A. G. Paulusz, J. Electrochem. Soc., 120, 942 (1973).
[17] J. Stade, D. Hahn and R. Dittmann, J. Lumin., 8, 318, (1974).
[18] A. M. Srivastava and W. W. Beers, J. Electrochem. Soc., 143, 203 (1996).
[19] A. V. Shamshurin, N. P. Efryushina and A.V. Repin, Inorg. mater., 36, 629 (2000).
[20] Z. Bryknar, V. Trepakov, Z. Potucek and L. Jastrabik, J. Lumin., 87, 605 (2000).
[21] S. V. Bulyarskii, A. V. Zhukov and V. V. Prikhod’ko, Opt. spectrosc., 94, 538 (2003).
[22] L. H. Ahrens., Geochim. Cosmochim. Acta, 2, 155 (1952).
[23] R. B. Von Dreele, P. W. Bless, E. Kostiner and R. E. Hughes, J. solid state chem., 2, 612 (1970).
[24] P. W. Bless, R. B. Von Dreele, E. Kostiner and R. E. Hughes, J. solid state chem., 4, 262 (1972).
[25] M. E. Van Ipenburg, G. J. Dirksen and G. Blasse, Mater. Chem. Phys., 39, 236 (1995).
[26] Shigeo Shionoya and William M. Yen, “Phosphor Handbook”, CRC Press LLC, Boca Raton, U.S.A. (1999)
[27] G. Blasse, Chem. Mater., 1, 294 (1989)
[28] J. F. Mouder, W. F. Stickle, P. E. Sobol, K. D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”, Perkin-Elmer Corporation, Minnesota (1992).
[29] F. Nishi, Acta Cryst., C52, 2393 (1996).
[30] C. R. Robbins and E. M. Levin, J. Res. Natl. Bur. Stand. Sect. A., 65, 127 (1961).
[31] P. Fischer, W. Halg and E. Stoll, Acta Cryst., 21, 765 (1966).
[32] Z. Bryknar, V. Trepakov, Z. Potucek and L. Jastrabik, J. Lumin., 87, 605 (2000).
[33] N. Iyi and M. Gobbels, J. Solid State Chem., 122, 46 (1996).
[34] T. I. Karu, IEEE J. Quantum Electron., 10, 23 (1987)
[35] Young, S. et. al., Lasers Surg. Med., 9, 497 (1989)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top