跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/27 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王志翔
論文名稱:新型三價銥金屬磷光錯合物的合成及其光物理的研究
論文名稱(外文):Synthesis and Photophysical properties of Novel Phosphorescent Iridium(III) Complexes
指導教授:許慶豐許慶豐引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:114
中文關鍵詞:磷光有機發光二極體
外文關鍵詞:IrPhosphorescentOLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的第一部份主要在敘述利用兩個 N-phenyl-substituted pyrazoles 和 2-pyridyl pyrazole (or triazole) ligands 來合成一系列室溫下具有高效率藍色磷光放光的銥金屬錯合物。利用 X-ray 單晶繞射來確定錯合物 [(dfpz)2Ir(fppz)] (1a) 和 [(fmpz)2Ir(hptz)] (3d) 的結構。最後利用 steady-state, relaxation dynamics, 以及理論計算發現這系列錯合物的發光效率會如此差的主要原因是來自於在T1 能階時,銥金屬與配位基間的鍵結變弱會導致 T1 能階較shallow 而能量容易以非放光的形式回到基態而促使能量快速的散失。
第二部份,我們以新穎的方法合成出一系列同型的銥金屬錯合物,預期可以控制其發光團來得到藍光的錯合物。在實驗的合成上,我們只能單獨得到 meridional 的結構。相對於大多數的電中性銥金屬錯合物只有單一最大放射波長,這系列錯合物在溶液中隨著溫度的不同會有明顯的雙重最大放射波長。這樣的結果是我們沒有預期的,經由 intra-ligand charge transfer (ILCT) 到 ligand-to-ligand charge transfer (LLCT) 的轉移所形成的,而 LLCT 並不會導致發光效率的下降,但會有我們不希望的紅位移發生。
第三部份,利用兩個 2-(p-tolyl)pyridine 或 1-phenylisoquinoline 和 2-pyridyl pyrrole 配位基來合成出一系列高效率綠色或紅橘色磷光放光的銥金屬錯合物。
The first part of this paper report a series of heteroleptic Ir(III) metal complexes 1�{3 bearing two N-phenyl-substituted pyrazoles and one 2-pyridyl pyrazole (or triazole) ligands were synthesized and characterized to attain highly efficient, room-temperature blue phosphorescence. X-ray structural analyses on complexes [(dfpz)2Ir(fppz)] (1a) and [(fmpz)2Ir(hptz)] (3d) were established to confirm their molecular structures. Our results, on the basis of steady-state, relaxation dynamics, and theoretical approaches, lead to a conclusion that, for complexes 1�{3, the weakening of iridium metal�{ligand bonding strength in the T1 state plays a crucial role for the fast deactivation.
The second part of this paper report the synthesis and characterization of a new series of homoleptic tris-pyridyl azolate Iridium(III) complexes, with an anticipation to see symmetry restriction on such system, i.e. showing efficient blue phosphorescence with better color chromaticity. The synthetic scheme rendered solely meridional structures. In contrast to most neutral Ir(III) complexes possessing unique phosphorescence, dual phosphorescence was observed in solution, of which the intensity ratio and the associated relaxation dynamics show remarkable temperature dependence. The results lead us to propose an unexpectedly intra-ligand charge transfer (ILCT) to ligand-to-ligand charge transfer (LLCT) conversion, for which the LLCT has not only lowered the luminous efficiency, but also resulted in an unwanted bathochromatic shifting.
The last part of this paper report a series of heteroleptic Ir(III) metal complexes 1�{5 bearing two 2-(p-tolyl)pyridine or 1-phenylisoquinoline and one 2-pyridyl pyrrole ligands were synthesized and characterized to attain highly efficient green or reddish orange phosphorescence.
中文摘要.. ……………………………………………………………………………..i
英文摘要………………………………………………………………………………ii
謝誌…………………………………………………………………………………...iv
圖目錄……………………………………………………………………………….viii
表目錄...........................................................................................................................x
序論................................................................................................................................1
第一章、OLED 簡介............................................................................................1
第二章、螢光及磷光發光原理............................................................................3
第三章、影響螢光和磷光的因素........................................................................6
第一部份、新型三價環形銥金屬藍色磷光錯合物的合成及其光物理的研究........8
第一章、緒論........................................................................................................8
第一節、簡介................................................................................................8
第二節、本文目的..................................................................................... 16
第二章、實驗部份............................................................................................. 18
第一節、ㄧ般敘述..................................................................................... 18
第二節、實驗步驟..................................................................................... 21
1. fmpzH 之合成..................................................................................... 21
2. dfpzH 之合成....................................................................................... 22
3. dfmpzH 之合成................................................................................... 23
4. fpzH 之合成......................................................................................... 23
5. fptzH 之合成....................................................................................... 24
6. fppzH 之合成....................................................................................... 26
7. hptzH 之合成....................................................................................... 27
錯合物 [Ir(dfpz)2Cl]2 之合成................................................................. 28
錯合物 [Ir(fmpz)2Cl]2 之合成................................................................ 29
錯合物 [Ir(dfmpz)2Cl]2 之合成.............................................................. 29
錯合物 [Ir(fpz)2Cl]2 之合成................................................................... 30
錯合物 [(dfpz)2Ir(fppz)] 之合成 【1a】............................................... 30
錯合物 [(fpz)2Ir(fppz)] 之合成 【1b】................................................ 31
錯合物 [(dfmpz)2Ir(fppz)] 之合成 【1c】........................................... 32
錯合物 [(fmpz)2Ir(fppz)] 之合成 【1d】............................................. 33
錯合物 [(dfpz)2Ir(fptz)] 之合成 【2a】............................................... 34
錯合物 [(fmpz)2Ir(fptz)] 之合成 【2d】.............................................. 35
錯合物 [(dfpz)2Ir(hptz)] 之合成 【3a】............................................... 36
錯合物 [(fpz)2Ir(hptz)] 之合成 【3b】................................................. 37
vi
錯合物 [(dfmpz)2Ir(hptz)] 之合成 【3c】............................................ 38
錯合物 [(fmpz)2Ir(hptz)] 之合成 【3d】............................................. 39
第三章、結果與討論......................................................................................... 41
第一節、錯合物的結構解析..................................................................... 41
第二節、錯合物的電化學性質................................................................. 46
第三節、錯合物的光物理性質探討......................................................... 48
第四節、錯合物的理論計算探討............................................................. 56
第四章、結論..................................................................................................... 58
第二部份、新穎同型三價環形銥金屬磷光錯合物的合成及其光物理的研究..... 59
第一章、緒論..................................................................................................... 59
第一節、簡介............................................................................................. 59
第二節、本文目的..................................................................................... 61
第二章、實驗部份............................................................................................. 62
第一節、實驗步驟..................................................................................... 62
錯合物 [m-Ir(bppz)3] 之合成【1】....................................................... 62
錯合物 [m-Ir(fppz)3] 之合成【2】......................................................... 63
錯合物 [m-Ir(fptz)3] 之合成【3】......................................................... 64
第三章、結果與討論......................................................................................... 66
第一節、錯合物的結構解析..................................................................... 66
第二節、錯合物的光物理性質探討......................................................... 70
第四節、錯合物的理論計算探討............................................................. 77
第四章、結論..................................................................................................... 79
第三部份、新穎三價環型銥金屬吡咯衍生物之錯合物合成................................. 80
第一章、緒論..................................................................................................... 80
第一節、簡介............................................................................................. 80
第二節、本文目的..................................................................................... 84
第二章、實驗部份............................................................................................. 85
1. 配位基 isopyH 之合成...................................................................... 85
2. 配位基 (pypy-2Me)H 之合成........................................................... 86
3. 配位基 (iso-indol)H 之合成.............................................................. 87
4. 配位基 Ph2PCF3 之合成.................................................................... 88
錯合物 [Ir(tpy)2Cl]2 之合成................................................................... 89
錯合物 [Ir(piq)2Cl]2 之合成................................................................... 89
錯合物 [Ir(tpy)2(pypr-Me)] 之合成【1】............................................. 90
錯合物 [Ir(tpy)2(pypr-CF3-tBu)] 之合成【3】..................................... 91
錯合物 [Ir(tpy)2(pypr-2CF3)] 之合成【4】........................................... 92
錯合物 [Ir(tpy)2(isopr)] 之合成【5】................................................... 93
錯合物 [Ir(piq)2(pypr-2CF3)] 之合成【6】.......................................... 94
vii
錯合物 [Ir(piq)2(pypr-CF3-tBu)] 之合成【7】…………………………95
第三章、結果與討論......................................................................................... 96
第一節、錯合物的結構與性質探討......................................................... 96
第二節、錯合物的光物理性質探討......................................................... 98
第三章、結論................................................................................................... 104
附錄........................................................................................................................... 105
參考文獻....................................................................................................................112
1.Pope, P.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
2.Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
3.Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackey, K. D.; Friend, R. H.; Brun, P. L.; Holmes, A. B. Nature, 1990, 347, 539.
4.Skoog, D. A.; Holler, F. J.; Nieman, T. A. PRINCIPLES OF INSTRUMENTAL ANALYSIS.
5.Ikai, M.; Tokito, S.; Sakamoto, Y.; Suzuki, T.; Taga, Y. Appl. Phys. Lett. 2001, 79, 156.
6.Okada, S.; Iwawki, H.; Furugori, M.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Tsuboyama, A.; Takiguchi, T.; Mizutani, H.; SID Digest 2000, 1360.
7.Lee, C.; Das, R. R.; Kim J. Chem. Mater. 2004, 16, 4642.
8.Li, J.; Djurovich, P. I.; Alleyne, B. D.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. Polyhedron. 2004, 23, 419.
9.Yeh, S.-J.; Wu, M.-F.; Chen, C.-T.; Song, Y.-H.; Chi, Y.; Ho, M.-H.; Hsu, S.-F.; Chen, C.-H. Adv. Mater. 2005, 17, 285.
10.Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 4344.
11.Baldo, M. A.; O’Brien, D. F.; Thompson, M. E.; Forrest, S. R. Phys. Rev. B. 1999, 20, 14422.
12.Tokito, S.; Iijima, T.; Suzuri, Y.; Kita, H.; Toshimitsu,; Tsuzuki,; Sato, F. Appl. Phys. Lett. 2003, 83, 569.
13.Sajoto, T.; Djurovich, P. I.; Tamayo, A.; Yousufuddin, M.; Bau, R.; Thompson, M. E.; Holmes, R. J.; Forrest, S. R. Inorg. Chem. 2005, 44, 7992.
14.Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7377.
15.Nam, E. J.; Kim, J. H.; Kim, B. O.; Kim, S. M.; Park, N. G.; Kim, Y. S.; Kim, Y. K.; Ha, Y. Bull. Chem. Soc. Jpn. 2004, 77, 751.
16.Coppo, P.; Plummer, E. A.; Cola, L. D. Chem. Commun. 2004, 15, 1774.
17.Chen, H.-Y.; Chi, Y.; Liu, C.-S.; Yu, J.-K.; Chen, K.-S.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H.; Carty, A. J.; Yeh, S.-J.; Chen, C.-T. AdV. Funct. Mater. 2005, 15, 567.
18.(a) Grushin, V. V.; Herron, N.; LeCloux, D. D.; Marshall, W. J.; V. Petrov, A.; Wang, Y. Chem. Commun. 2001, 16, 1494. (b) Wang, Y.; Herron, N.; Grushin, V. V.; LeCloux, D.; Petrov, V. Appl. Phys. Lett. 2001, 79, 449.
19.In an experiment using 355 nm (3rd harmonic of Nd:YAG laser,10 mJ/(cm2/pulse) (10 Hz repetition rate) as an excitation source to photolyze 1a in CH2Cl2 for a period of 10 min, negligible photoproducts were produced, as indicated by a single spot (complex 1a) in the TLC plate. Similar results were
observed for other complexes.
20.Hay, P. J. J. Phys. Chem. A. 2002, 106, 1634.
21.King, K. A.; Spellane, P. J.; Watts, R. J. J. Am. Chem. Soc. 1985, 107, 1431.
22.Dedeian, K.; Djurovich, P. I.; Garces, F. O.; Carlson, G.; Watts, R. J. Inorg. Chem. 1991, 30, 1685.
23.Colombo, M. G.; Brunold, T. C.; Riedener, T.; Guedel, H. U.; Fortsch, M.; Buergi, H. B. Inorg. Chem. 1994, 33, 545.
24.Yang, C.-H.; Fang, K.-H.; Chen, C.-H.; Sun, I.-W. Chem. Commun. 2004, 19, 2232.
25.(a) Holmes, R. J.; Forrest, S. R.; Tung, Y.-J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E. Appl. Phys. Lett. 2003, 82, 2422. (b) Tokito, S.; Iijima, T.; Suzuri, Y.; Kita, H.; Tsuzuki, T.; Sato, F. Appl. Phys. Lett. 2003, 83, 569.
26.Yang, C.-H.; Li, S.-W.; Chi, Y.; Cheng, Y.-M.; Yeh, Y.-S.; Chou, P.-T.; Lee, G.-H.; Wang, C.-H.; Shu, C.-F. Inorg. Chem. 2005, 44, 7770.
27.(a) Wu, P.-C.; Yu, J.-K.; Song, Y.-H.; Chi, Y.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H. Organometallics. 2003, 22, 4938. (b) Yu, J.-K.; Hu, Y.-H.; Cheng, Y.-M.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H.; A. J. Carty,; Tung, Y.-L.; Lee, S.-W.; Chi, Y.; Liu, C.-S. Chem. Eur. J. 2004, 10, 6255.
28.Montes,; Li, V. A.; Pohl, G.; Shinar, R.; Anzenbacher, J. P. Adv. Mater. 2004, 16, 2001.
29.Lamansky, S.; Djurovich, P.; Murphy, D.; Razzaq, F. A.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am.Chem. Soc. 2001, 123, 4304.
30.Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; S.; Igawa, Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. J. Am. Chem. Soc. 2003, 125, 12971.
31.Nazeeruddin, M. K.; Baker, R. H.; Berner, D.; Rivier, S.; Zuppiroli, L.; Graetzel, M. J. Am. Chem. Soc. 2003, 125, 8790.
32.Li, J.; Djurovich, P. I.; Alleyne, B. D.; Yousufuddin, M.; Ho, N. N.; J. C.; Thomas,; Peters, J. C.; Bau, R.; Thompson, M. E. Inorg.Chem. 2005, 44, 1713.
33.(a) Klappa, J. J.; Geers, S. A.; Schmidtke, S. J.; MacManus-Spencer, L. A.; McNeill, K. Dalton Trans. 2004, 6, 883. (b) Klappa, J. J.; Rich, A. E.; McNeill, K. Org. Lett. 2002, 3, 435.
34.(a) Wu, Q.; Lavigne, J. A.; Tao, Y.; D’Iorio, M.; Wang, S. Inorg. Chem. 2000, 39, 5248. (b) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684. (c) Sezen, B.; Sames, D. J. Am. Chem. Soc. 2003, 125, 5274.
35.(a) Murphy-Jolly, M. B.; Lewis, L. C.; Caffyn. A. J. M.; Chem. Commun. 2005, 35, 4479. (b) Atherton, M. J.; Fawcett, J.; Holloway, A. P.; Hope, E. G.; Russell, D. R.; Saunders, G. C.; Stead, R. M. J. J. Chem. Soc. Dalton Trans. 1997, 1137. (c) Bedford, R. B.; Hazelwood, S. L.; Horton, P. N.; Hursthouse, M. B. Dalton Trans. 2003, 21, 4164.
36.Li, C.-L.; Su, Y.-J;, Tao, Y.-T; Chou, P.-T.; Chien, C.-H.; Cheng, C.-C.; Liu, R.-L. AdV. Funct. Mater. 2005, 15, 567.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top