跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/03 07:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王志逢
研究生(外文):Chih-Feng Wang
論文名稱:新穎低表面能高分子研究及其在奈米壓印系統與超疏水表面之應用和學理探討
論文名稱(外文):The Study of A New Class of Low Surface Free Energy Material and Its Applications for Nanoimprint Lithography and Superhydrophobic Surfaces
指導教授:張豐志
指導教授(外文):Feng-Chih Chang
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:149
中文關鍵詞:低表面能超疏水奈米壓印高分子薄膜
外文關鍵詞:low surface free energysuperhydrophobicnanoimprintpolymerthin film
相關次數:
  • 被引用被引用:1
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
高分子領域中,化學性質與物理性質皆具有相當的重要性,且兩者是相輔相成的。我們可藉由化學改質的方法來滿足某些物理性質的需求、或以物理性質研究來延續合成產物的應用性與實用性。本論文以polybenzoxazine為研究主體,內容分列為三大主題:

1. Polybenzoxazine本身之低表面能特性研究
在以往的文獻中,降低高分子表面能的方法大部分是加入含氟的化合物或官能基。利用高分子的分子間與分子內作用力來改變表面能,為一嶄新的方向,相關研究仍屬少見。本研究中,我們發現polybenzoxazine具有較鐵氟龍更低的表面能,是一個新穎的疏水低表面能材料,此外,我們成功利用分子間與分子內作用力(氫鍵)來解釋改變高分子表面能的變化。Polybenzoxazine 較一般常見的含氟低表面能材料具有價格便宜與易於製程的優點。

2. Polybenzoxazine應用超疏水表面(superhydrophobic surface)的製備與原理探討
超疏水的定義為:水在物體表面的接觸角 (contact angle) 必須大於等於150度。物體表面具自清潔之功能是奈米科技時代廣為討論的課題,進行表面處理使其具備超疏水特性是科學家追求的目標。我們利用電漿改質,使polybenzoxazine表面具有微米與奈米等級的粗糙結構,並達到超疏水特性。此外,我們亦運用polybenzoxazine本身的疏水特性結合奈米粉體,研發出一可在所有pH值中保持超疏水特性的表面。我們亦計畫運用最常拿來解釋超疏水現像的兩個學說,來對超疏水特性作學理上的探討。

3. polybenzoxazine應用於奈米壓印微影(nanoimprint lithography)系統
奈米壓印技術是一種成本較低之奈米製造技術,為近年頗受重視的科技,主要包含兩個步驟:壓印(imprinting)和圖案轉移(pattern transfer)。在壓印過程中,母模與高分子阻劑之間的黏著情形是造成轉印圖案毀損的主要原因。在本研究中,我們利用polybenzoxazine的低表面能特性,克服高分子阻劑沾黏的問題,在高分子表面製造出奈米圖形。
The physical and chemical properties are both important in the polymer researches. We can enhance many properties of polymers by chemical methods (i.e. variation of the functional groups). By doing detailed studies of physical properties of polymers , we can discover numerous applications of them. In this study, we focus on three major subjects which based on the polybenzoxazines:

1. Low surface free energy materials based on polybenzoxazines
We discovered that polybenzoxazines can possess surface free energies even lower than that of pure poly(tetrafluoroethylene) (Teflon). We monitored the contact angles and surface free energies, based on the Lifshitz-van der Waals acid-base theory, during the polymerizations of benzoxazines. By combining results we obtained from surface free energy and Fourier transform infrared spectrocopic analyses, we found the relationship between the hydrogen bonding and the surface free energy. These polybenzoxazines comprise a new class of low-surface-free-energy material, they are cheaper to prepare and easier to process than are conventional fluoropolymers and silicones.

2. Superhydrophobic polybenzoxazine surfaces
Superhydrophobic surfaces (water contact angle > 150°) have attracted much interest because of potential applications in daily life as well as in many industrial processes. One method to improve the liquid repellency of a surface is to combine a suitable chemical structure (surface energy) with a topographical microstructure (roughness). In this section, we report two methods to create superhydrophobic polybenzoxazine surfaces. Firstly, we produce super-amphiphobic surfaces through plasma modification of benzoxazine films. Secondly, we contribute a simple two-step casting process to create a stable superhydrophobic surface.

3. Polybenzoxazine as a Mold Release Agent for Nanoimprint Lithography
Nanoimprint lithography (NIL), a high volume and cost-effective patterning technique, is potentially great as a candidate for next generation lithography. One of the most important problems usually encountered for NIL is the tendency for the resist polymer to adhere to the mold during mold release. This new class of low surface free energy material called polybenzoxazine provides an efficient mold release agent for silicon mold which is easier to process, costs low, and has no side reaction.
Outline of Contents
Pages

Acknowledgments
Outline of Contents I
List of Tables IV
List of Figures VI
Abstract (in Chinese) XII
Abstract (in English) XIV

Chapter 1 Introduction to Polybenzoxazines
1.1 Overview on Benzoxazines and Polybenzoxazines 1
References 5

Chapter 2 Introduction to Theory
2.1 Surface Free Energy 7
2.1.1 Interfacial Thermodynamics 7
2.1.2 Contact Angle Equilibrium: Young Equation 9
2.1.3 Determination of Surface Free Energy 12
2.1.4 Surface Free Energy of Polymer 19
2.2 Superhydrophobic Surfaces 25
2.2.1 The Laws of Wetting 26
2.2.2 Natural Examples 29
2.2.3 Synthetic Substrates 33
2.2.4 Models 37
2.3 Nanoimprint Lithography 42
2.3.1 Introduction 42
2.3.2 Hot-Embossing Lithography (HEL) 45
2.3.3 Masters, Stamps, and Molds 51
2.3.4 Sticking Challenge 52
2.3.5 Applications 56
References 58

Chapter 3 A New Class of Low Surface Free Energy Material
Abstract 65
3.1 Introduction 66
3.2 Experimental 69
3.2.1 Materials 69
3.2.2 Thin-Film Formation and Polymerization 69
3.2.3 Fourier Transform Infrared Spectroscopy (FTIR) 69
3.2.4 Contact Angle Measurement 69
3.2.5 Atomic Force Microscopy (AFM) 70
3.2.6 Surface Energy Determinations 70
3.3 Results and Discussion 73
3.4 Conclusions 78
References 79

Chapter 4 Fabrication of Biomimetic Super-Amphiphobic Surfaces Through Plasma Modification of Benzoxazine Films
Abstract 92
4.1 Introduction 93
4.2 Experimental 95
4.2.1 Materials 95
4.2.2 Fabrication of Super-Amphiphobic Surfaces 95
4.2.3 Scanning Electron Microscopy (SEM) 95
4.2.4 Contact Angle Measurement 96
4.2.5 Atomic Force Microscopy (AFM) 96
4.2.6 Fourier Transform Infrared Spectroscopy (FTIR) 96
4.2.7 X-ray photoelectron spectroscopy (XPS) 96
4.3 Results and Discussion 97
4.4 Conclusions 102
References 103

Chapter 5 Stable Superhydrophobic Polybenzoxazine Surfaces over a Wide pH Range
Abstract 113
5.1 Introduction 114
5.2 Experimental 116
5.2.1 Materials 116
5.2.2 Fabrication of Super-Amphiphobic Surfaces 116
5.2.3 Thermal Stability Test 116
5.2.4 Durability Test 116
5.2.5 Scanning Electron Microscopy (SEM) 117
5.2.6 Contact Angle Measurement 117
5.2.7 Atomic Force Microscopy (AFM) 117
5.3 Results and Discussion 118
5.4 Conclusions 122
References 123

Chapter 6 First Example of Polybenzoxazine as a Mold Release Agent for Nanoimprint Lithography
Abstract 130
6.1 Introduction 131
6.2 Experimental 133
6.2.1 Materials 133
6.2.2 Contact Angle Measurement 133
6.2.3 The Glass Transition Temperature (Tg) Measurement 133
6.2.4 The Film Thickness Measurement 133
6.2.5 Scanning Electron Microscopy (SEM) 133
6.2.6 Nanoimprint Lithography (NIL) 134
6.3 Results and Discussion 135
6.4 Conclusions 138
References 139

Chapter 7 Conclusions 145
List of Publications 147
Introduction to Author 149
[1] A. Dupré, Theorié mécanique de la chleur, Paris, 1869, p.368.
[2] T. Young, Phil Trans. R. Soci. Lond. 1805, 95, 65.
[3] A. S. Michaeles, S. W. Dean, Jr., J. Phys. Chem. 1962, 66, 34.
[4] G. L. J. Baily, Proc. 2nd Int. Congr. Surf. Act., 1957, 3, 189.
[5] J. H. Poynting, J. J. Thompson, A Textbook of Physics: Properties of Matter, 8th ed., Charles Griffin, London, 1920.
[6] L. A. Girifalco, R. J. Good, J. Phys. Chem. 1957, 61, 904.
[7] R. J. Good, L. A. Girifalco, G. Kraus, J Phys. Chem. 1957, 62, 1418.
[8] R. J. Good, L. A. Girifalco, J. Phys. Chem. 1960, 64, 561.
[9] F. W. Fowkes, in Contact Angle, Wettability and Adhesion, Advances in Chemistry Series 43, R. F. Gould, Ed., American Chemical Society, Washington, DC, 1964, p. 99.
[10] F. W. Fowkes, in Adhesion and Adsorption of Polymers, Polymer Science and Technology, vol. 12A, L. H. Lee, Ed., Plenum Press, New York, 1980, p. 43.
[11] D. K. Owens, R. C. Wendt, J. Appl. Polym. Sci. 1969, 13, 1741.
[12] D. H. Kaelble, J. Adhesion 1970, 2, 50.
[13] S. Wu, J. Polym. Sci., Part C 1971, 34, 19.
[14] S. Wu, in Adhesion and Adsorption of Polymers, Polymer Science and Technology, vol. 12A, L. H. Lee, Ed., Plenum Press, New York, 1980, p. 53.
[15] F. M. Fowkes, M. A. Mostafa, Int. Eng. Chem. Prod. Res. Dev. 1978, 17, 3.
[16] F. M. Fowkes, D. C. McCarthy, M. A. Mostafa, J. Colloid Interface Sci. 1980, 78, 200.
[17] C. J. van Oss, M. K. Chaudhury, R. J. Good, Chem. Rev. 1988, 88, 927.
[18] . J. van Oss, L. Ju, M. K. Chaudhury, R. J. Good, J. Colloid Interface Sci. 1989, 128, 313.
[19] C. J. van Oss, R. J. Good, J. Macromol. Sci.-Chem. 1989, A26, 1183.
[20] C. J. van Oss, J. Dispers. Sci. Technol. 1990, 11, 491.
[21] C. J. van Oss, K. Arnold, R. J. Good, K. Gawrisch, S. Ohki, J. Macromol. Sci.-Chem. 1990, A27, 563.
[22] C. J. van Oss, R. J. Good, H. J. Busscher, J. Dispers. Sci. Technol. 1990, 11, 75.
[23] C. J. van Oss, R. F. Giese, Jr., R. J. Good, Langmuir 1990, 6, 1711.
[24] R. J. Good, C. J. van Oss, in Modern Approaches to Wettability, M. E. Schrader and G. I. Loeb, Eds., Plenum Press, New York, 1992, p. 1.
[25] R. J. Good, in Contact Angle, Wetting, and Adhesion, K. L. Mittal, Ed., VSP, xxx, 1993, p. 3.
[26] H. W. Fox, W. A. Zisman, J. Colloid Sci. 1950, 5, 514.
[27] H. W. Fox, W. A. Zisman, J. Colloid Sci. 1952, 7, 109.
[28] H. W. Fox, W. A. Zisman, J. Colloid Sci. 1952, 7, 428.
[29] D. G. LeGrand, G. L. Gaines, Jr., J. Colloid Interface Sci. 1969, 31, 162.
[30] D. G. LeGrand, G. L. Gaines, Jr., J. Colloid Interface Sci. 1973, 42, 181.
[31] S. Wu, J. Colloid Interface Sci. 1969, 31, 153.
[32] S. Wu, J. Macromol. Sci. 1974, C10, 1.
[33] H. Schonhorn, F. W. Ryan, J. Phys. Chem. 1966, 70, 3811.
[34] A. K. Rastogi, L. E. St. Pierre, J. Colloid Interface Sci. 1969, 31, 168.
[35] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 1997, 388, 431.
[36] W. Chen, A. Y. Fadeev, M. C. Hsieh, D. Õner, J. Youngblood, T. J. McCarthy, Langmuir 1999, 15, 3395.
[37] L. Feng, S. Li, Y. Li,; H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 2002, 14, 1857.
[38] R. Blossey, Nat. Mater. 2003, 2, 301.
[39] A. Lafuma, D. Quéré, Nat. Mater. 2003, 2, 457.
[40] A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Adv. Mater. 1999, 11, 1365.
[41] J. T. Woodward, H. Gwin, D. K. Schwartz, Langmuir 2000, 16, 2957.
[42] T. Sun, W. Song, L. Jiang, Chem. Commun. 2005, 1723.
[43] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, Langmuir 1999, 15, 4321.
[44] T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir 1996, 12, 2125.
[45] Y. Wu, H. Sugimura, Y. Inoue, O. Takai, Chem. Vap. Deposition 2002, 8, 47.
[46] K. Tsujii, T. Yamamoto, T. Onda, S. Shibuchi, Angew. Chem. Int. Ed. Engl. 1997, 36, 1011.
[47] K. Tadanaga, N. Katata, T. Minami, J. Am. Ceram. Soc. 1997, 80, 3213.
[48] A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Adv. Mater. 1999, 11, 1365.
[49] A. Nakajima, K. Abe, K. Hashimoto, T. Watanabe, Thin Solid Films 2000, 376, 140.
[50] J. Bico, C. Marzolin, D. Quéré, Europhys. Lett. 1999, 47, 220.
[51] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Langmuir 2000, 16, 5754.
[52] C. Marangoni, Ann. Phys. Chem. 1871, 143, 337.
[53] P. G. De Gennes, Rev. Mod. Phys. 1985, 57, 827.
[54] E. G. Shafrin, W. A. Zisman, Contact Angle, Wettability and Adhesion (Advances in Chemistry Series vol 43) (Washington, DC: American Chemical Society) 1964 pp 145
[55] C. Neinhuis, W. Barthlott, Ann. Bot. 1997, 79, 667.
[56] C. Neinhuis, W. Barthlott, Planta 1997, 202, 1.
[57] A. Otten, S. Herminghaus, Langmuir 2004, 20, 2405.
[58] P. Wagner, R. Fürstner, W. Barthlott, C. Neinhuis, J. Exp. Bot. 2003, 54, 1.
[59] T. Wagner, C. Neinhuis, W. Barthlott, Acta Zool. 1996, 3, 213.
[60] W. Lee, M. K. Jin, W. C. Yoo, J. K. Lee, Langmuir 2004, 20, 7665.
[61] X. Gao, L. Jiang, Nature 2004, 432 36.
[62] A. R. Parker, C. R. Lawrence, Nature 2001, 414, 33
[63] R. Blossey Nat. Mater. 2003, 2, 301.
[64] M. Morra, E. Occhiello, F. Garbassi, Langmuir 1989, 5, 872.
[65] I. Woodward, W. C. E. Schofield, V. Roucoules, J. P. S. Badyal, Langmuir 2003, 19, 3432.
[66] H. Y. Erbil, A. L. Demirel, Y. Avci, O. Mert, Science 2003, 299, 1377.
[67] Q. Xie, G. Fan, N. Zhao, X. Guo, J. Xu, J. Dong, L. Zhang, Y. Zhang, C. C. Han, Adv. Mater. 2004, 16, 302.
[68] K. K. S. Lau, J. Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, K. K. Gleason, Nano. Lett. 2003, 3, 1701.
[69] L. Feng, S. Li,Y. Li, H. Li, L. Zhang, J. Zhai,Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 2002, 14, 1857.
[70] H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 2001, 40, 1743.
[71] L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 2002, 41, 1221.
[72] C. Neinhuis, W. Barthlott, New Phytologist 1998, 138, 91.
[73] S. Herminghaus, Europhys. Lett. 2000, 52, 165.
[74] R. N. Wenzel, Ind. Eng. Chem. 1936, 28, 988.
[75] R. N. Wenzel, J. Phys. Chem. 1949, 53, 1466.
[76] A. Lafuma and D. Quéré, Nat. Mater. 2003, 2, 457.
[77] J. Bico, U. Thiele and D. Quéré, Colloids Surf. A 2002, 206, 41.
[78] N. Patankar, Langmuir 2003, 19, 1249.
[79] A. Marmur, Langmuir 2003, 19, 8343.
[80] A. B. D. Cassie, S. Baxter Trans. Faraday Soc. 1944, 40, 546.
[81] R. E. Johnson, R. H. Dettre, in Contact angle, Wettability and Adhesion, Advances in Chemistry Series, American Chemical Society, Washington DC, 1964, vol. 43, pp. 112–135.
[82] D. Öner, T. J. McCarthy, Langmuir 2000, 16, 7777.
[83] L. R. Harriott, Mater. Sci. Semicond. Process. 1998, 1, 93.
[84] B. Michel; A. Bernard; A. Bietsch; E. Delamarche; M. Geissler; D. Juncker; H Kind; J. P. Renault; H. Rothuizen; H. Schmid; P. Schmidt-Winkel; R. Stutz; H. Wolf. IBM J. Res. & Dev. 2001, 45, 697.
[85] Y. Xia; X. M. Zhao; G. M. Whitesides. Microelectonr. Eng. 1996, 32, 255.
[86] H.C. Scheer; H. Schulz; T. Hoffmann; in: H. S. Nalwa (Ed.) Handbook of Thin Film Materials, 5, Academic Press, 2002, p1.
[87] S. Y. Chou; P. R. Krauss; P. J. Renstrom. Appl. Phys. Lett. 1995, 67, 3114.
[88] S. Y. Chou; P. R. Krauss; P. J. Renstrom. Science 1996, 272, 85.
[89] S. Y. Chou. U.S. Patent 1998, 5.772,905.
[90] S. Y. Chou; P. R. Krauss; P. J. Renstrom. J. Vac. Sci. Technol., B 1996, 14, 4129.
[91] S.Y. Chou; P.R. Krauss; W. Zhang; L. Guo; L. Zhuang. J. Vac. Sci. Technol. B. 1997, 15, 2897.
[92] R. W. Jaszewski; H. Schift; J. Gobrecht; P. Smith. Microelectron. Eng. 1998, 41/42, 575.
[93] H. Schift; R. W. Jaszewski; C. David; J. Gobrecht. Microelectron. Eng. 1999, 46,121.
[94] R. Bartolini; W. Hannan; D. Karlsons; M. Lurie. Appi. Opt. 1970, 9, 2283.
[95] C. Puech; Opt. Commun. 1973, 7, 135.
[96] R. Ulrich; H. P. Weber; E. A. Chandross; W. J. Tomlinson; E. A. Franke. Appl. Phys. Lett. 1972, 20, 213.
[97] H. C. Scheer; H. Schuiz; T. Hoffmann; C. M. Sotomayor Torres. J. Vac. Sci. Technol..B 16, 3917 (1998).
[98] K. Zimmer; K. Otte; A. Braun; S. Rudschuck; H. Friedrich; H. Schuiz; H. C. Scheer; F. Bigl. Proc. EUSPEN. 1, 534 (1999).
[99] K. Pfeiffer; G. Bleidiessel; G. Gnietzner; H. Schuiz; T. Hoffmann; H. C. Scheer; C. M. Sotomayor-Torres; J. Ahopelto. Microelectron. Eng. 46,431 (1999).
[100] F. Gaboriau; M. C. Peignon; A. Barreau; G. Turban; C. Cardinaud; K. Pfeiffer; G. BleidieBel; G. Griitzner. Microelectron. Eng. 53, 501(2000).
[101] K. Pfeiffer; M. Fink; G. Bleidiessel; G. Gruetzner; H. Schuiz; H. C. Scheer; T. Hoffmann; C. Cardinaud. Microelectron. Eng. 53, 411 (2000).
[102] H. Schuiz; H.C. Scheer; T. Hoffmann; C. M. Sotomayor Torres; K. Pfeiffer; G. Bleidiessel; G. Griitzner; B. Heidari. J. Vac. Sci. Technol., B 18, 3582 (2000).
[103] B. Heidari; L. Maxirnov; L. Montelius. J. Vac. Sci. Technol., B. 17, 2961 (1999).
[104] M. Colburn; S. Johnson; M. Stewart; S. Damie; T. Bailey; B. Choi; M. Wedlake; T. Michaelson; C. G. Willson. Proc. SPIE, 3676, 379 (1999).
[105] D. W. van Krevelen; Properties of Polymers, Elsevier, Amsterdam (1996).
[106] K. N. G. Fuller; F. R. S. Tabor. Proc. R. Soc. London. Ser. A, 345, 327 (1975).
[107] J. K. Chen, F. H. Ko, K F. Hsieh, C. T. Chou, F. C. Chang, J. Vac. Sci. Technol. B 2004, 22, 3233.
[108] X. Zhao; R. Kopelman. J. Phys. Chem. 100, 11014 (1996).
[109] G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, R. S. Williams, Langmuir 2005, 21, 1158.
[110] A. Y. Fadeev, T. J. McCarthy, Langmuir 2000, 16, 7268.
[111] X. Song, J. Zhai, Y. Wang, L. Jiang, J. Phys. Chem. B 2005, 109, 4048.
[112] M. Li, J. Wang, L. Zhuang, S. Y. Chou, Appl. Phys. Lett. 2000, 76, 273.
[113] P. M. Moran; F. F. Lange. Appl. Phys. Lett. 74, 1332 (1999).
[114] P. R. Kraussa, S. Y. Chou, Appl. Phys. Lett. 1997, 71, 3174.
[115] Y. Takagaki, E. Wiebicke, H. Kostial, K. H. Ploog, Nanotechnology 2002, 13, 15.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊