|
\bibitem{Amann76} H. Amann, {\em Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces}, SIAM Rev., 18 (1976), pp. 620--709.
\bibitem{Baldi-Atiya94} P. Baldi and A. F. Atiya, {\em How delays affect neural dynamics and learning}, IEEE Trans. Neural Networks, 5 (1994), pp. 612--621.
\bibitem{Belair-Campbell-Driessche96} J. B\'{e}lair, S. A. Campbell and P. van den Driessche, {\em Frustration, stability, and delay-induced oscillations in a neural network model}, SIAM J. Appl. Math., 56 (1996), pp. 245--255.
\bibitem{Campbell-Edwards-Driessche04} S. A. Campbell, R. Edwards and P. van den Driessche, {\em Delayed coupling between two neural networks loops}, SIAM J. Appl. Math., 65 (2004), pp. 316--335.
\bibitem{Cao99} J. Cao, {\em Global stability analysis in delayed cellular neural networks}, Phys. Rev. E, 59 (1999), pp. 5940--5944.
\bibitem{Cao03} J. Cao, {\em New results concerning exponential stability and periodic solutions of delayed cellular neural networks}, Phys. Lett. A, 307 (2003), pp. 136--147.
\bibitem{Cao-Li00} J. Cao and Q. Li, {\em On the exponential stability and periodic solutions of delayed cellular neural networks}, J. Math. Anal. Appl., 252 (2000), pp. 50--64.
\bibitem{Civalleri-Gilli94} P. P. Civalleri and M. Gilli, {\em On stability of cellular neural networks with delay}, IEEE Trans. Circuits Syst., 40 (1993), pp. 157--165.
\bibitem{Cheng-Lin-Shih06} C. Y. Cheng, K. H. Lin and C. W. Shih, {\em Multistability in recurrent neural networks}, SIAM Appl. Math., 66 (2006), pp. 1301-1320.
\bibitem{Cheng-Lin-Shih} C. Y. Cheng, K. H. Lin and C. W. Shih, {\em Multistability and convergence in delayed neural networks}, submitted, 2005.
\bibitem{Cheng-Shih} C. Y. Cheng and C. W. Shih, {\em Global dynamics for multi-stable delayed neural networks}, preprint, 2006.
\bibitem{Chu-Zhang-Wang03} T. Chu, Z. Zhang and Z. Wang, {\em A decomposition approach to analysis of competitive-cooperative neural networks with delay}, Phys. Lett. A, 312 (2003), pp. 339--347.
\bibitem{Chua} L. O. Chua, {\em CNN: A paradigm for complexity}, World Scientific, 1998.
\bibitem{Chua-Yang88} L. O. Chua and L. Yang, {\em Cellular neural networks: Theory}, IEEE Trans. Circuits Syst., 35 (1988), pp. 1257--1272.
\bibitem{Cohen-Grossberg83} M. A. Cohen and S. Grossberg, {\em Absolute stability of global pattern formation and parallel memory storage by competitive neural networks}, IEEE Trans. Syst. Man Cybern, 13 (1983), pp. 815--826.
\bibitem{Dieudonne} J. Dieudonn\'{e}, {\em Foundations of Modern Analysis}, Academic Press, New York, 1969.
\bibitem{Feng-Plamondon01} C. Feng and R. Plamondon, {\em On the stability analysis of delayed neural network systems}, Neural Networks, 14 (2001), pp. 1181--1188.
\bibitem{Foss} J. Foss, A. Longtin, B. Mensour and J. Milton, {\em Multistability and delayed recurrent loops}, Phys. Rev. Lett., 76 (1996), pp. 708--711.
\bibitem{Gilli94} M. Gilli, {\em Stability of cellular neural networks and delayed cellular neural networks with nonpositive templates and nonmonotonic output functions}, IEEE Trans. Circuits Syst. I, 41 (1994), pp. 518--528.
\bibitem{Gyori-Hartung03} I. Gy\H{o}ri and F. Hartung, {\em Stability analysis of a single neuron model with delay}, J. Comp. Appl. Math., 157 (2003), pp. 73--92.
\bibitem{Haddock-Terjeki83} J. R. Haddock and J. Terj\'{e}ki, {\em Liapunov-Razumikhin functions and an invariance principle for functional differential equations}, J. Diff. Eq., 48 (1983), pp. 95--122.
\bibitem{Hahnloser} R. L. T. Hahnloser, {\em On the piecewise analysis of networks of linear threshold neurons}, Neural Networks, 11 (1998), pp. 691--697.
\bibitem{Hale80} J. Hale, {\em Ordinary differential equations}, Second edition, Robert E. Krieger Publishing Co., 1980.
\bibitem{Hale88} J. Hale, {\em Asymptotic behavior of dissipative systems}, AMS, 1988.
\bibitem{Hale} J. Hale and S. V. Lunel, {\em Introduction to functional differential equations}, Springer-Verlag, 1993.
\bibitem{Hirsch87} M. W. Hirsch, {\em Convergence in neural networks}, In: Proc. of the 1st Int. Conf. on Neueal Networks. San Diego, IEEE Service Center, 1987, pp. 115--126.
\bibitem{Hirsch88} M. W. Hirsch, {\em Stability and convergence in strongly monotone dynamical systems}, J. Reine Angew. Math., 383 (1988), pp. 1--53.
\bibitem{Hirsch89} M. W. Hirsch, {\em Convergence activation dynamics in continuous time networks}, Neueal Networks, 2 (1989), pp. 331--349.
\bibitem{Hopfield84} J. Hopfield, {\em Neurons with graded response have collective computational properties like those of two sate neurons}, Proc. Natl. Acad. Sci. USA, 81 (1984), pp. 3088--3092.
\bibitem{Joy} M. Joy, {\em Results concerning the absolute stability of delayed neural network}, Neural Networks, 13 (2000), pp. 613--616.
\bibitem{Krisztin-Walther-Wu99} T. Krisztin, H. O. Walther and J. Wu, {\em Shape, smoothness and invariant stratification of an attracting set for delayed positive feedback}, Fiel. Inst. Mono. Seri., vol. 11, Amer. Math. Soc., Providence, RI, 1999.
\bibitem{Kolmanovskii} V. Kolmanovskii and V. Nosov, {\em Stability of functional differential equations}, Academic Press, London, 1986.
\bibitem{Liao-Chen-Sanchez02} X. Liao, G. Chen and E. N. Sanchez, {\em Delay-dependent exponential stability analysis of delayed neural networks: an LMI appraoch}, Neural Networks, 15 (2002), pp. 855--866.
\bibitem{Liao-Li05} X. Liao and C. Li, {\em An LMI approach to asymptotical stability of multi-delayed neural network}, Phys. D, 200 (2005), pp. 139--155.
\bibitem{Liao-Wang03} X. Liao and J. Wang, {\em Global dissipativity of continuous-time recurrentneural networks with time delay}, Phys. Rev. E, 68 (2003), 016118.
\bibitem{Lin-Shih99} S. S. Lin and C. W. Shih, {\em Complete stability for standard cellular neural network}, Int. J. Bifurcation and Chaos, 9 (1999), pp. 909--918.
\bibitem{Marcus-Westervelt89} C. M. Marcus and R. M. Westervelt, {\em Stability analog neural networks with delay}, Phys. Rev. A, 39 (1989), pp. 347--359.
\bibitem{Matano84} H. Matano, {\em Existence of nontrival unstable sets for equilibria of strongly order preserving systems}, J. Fac. Sci. Univ. Tokyo, 30 (1984),pp. 645--673.
\bibitem{Mohamad-Gopalsamy03} S. Mohamad and K. Gopalsamy, {\em Exponential stability of continuous-time and discrete-time cellular neural networks with delays}, Appl. Math. Comp., 135 (2003), pp. 17--38.
\bibitem{Morita} M. Morita, {\em Associative memory with non-monotone dynamics}, Neural Networks, 6 (1993), pp. 115-126.
\bibitem{Olien-Belair97} L. Olien and J. B\'{e}lair, {\em Bifurcations, stability, and monotonicity properties of a delayed neural network model}, Phys. D, 102 (1997), pp. 349--363.
\bibitem{Pituk03} M. Pituk, {\em Convergence to equilibria in scalar nonquasimonotone functional differential equations}, J. Diff. Eq., 193 (2003), pp. 95--130.
\bibitem{Roska-Chua92} T. Roska and L. O. Chua, {\em Cellular neural networks with nonlinear and delay-type template elements and non-uniform grids}, Int. J. Circuit Theory Appl., 20 (1992), pp. 469--481.
\bibitem{Shayer-Campbell00} L. P. Shayer and S. A. Campbell, {\em Stability, bifurcation, and multistability in a system of two coupled neurons with multiple time delays}, SIAM J. Appl. Math., 61 (2000), pp. 673--700.
\bibitem{Shih-Weng00} C. W. Shih and C. W. Weng, {\em Cycle-symmetric matrices and convergence neural networks}, Physica D, 146 (2000), pp. 213--220.
\bibitem{Shih01} C. W. Shih, {\em Complete stability for a class of cellular neural networks}, Int. J. Bifurcation and Chaos, 11 (2001), pp. 169--177.
\bibitem{Smith95} H. L. Smith, {\em Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems}, Math. Surveys Monographs 41, AMS, Providence, RI, 1995.
\bibitem{Smith-Thieme91} H. L. Smith and H. R. Thieme, {\em Strongly order preserving semiflows generated by functional differential equations}, J. Diff. Eq., 93 (1991), pp. 332--363.
\bibitem{Stepan} G. St\'{e}p\'{a}n, {\em Retarded dynamical systems}, Pitman Research Notes in Mathematics, vol. 210, Longman Group, Essex, 1989.
\bibitem{Takahashi00} N. Takahashi, {\em A new sufficient condition for complete stability of cellular neural networks with delay}, IEEE Tran. Circ. Syst. I, 47 (2000), pp. 793--799.
\bibitem{Takahashi-Chua98} N. Takahashi and L. O. Chua, {\em On the complete stability of nonsymmetric cellular neural networks}, IEEE Tran. Circ. Syst. I, 45 (1998), pp. 754--758.
\bibitem{Driessche98} P. van den Driessche and X. Zou, {\em Global attractivity in delayed Hopfield neural network models}, SIAM J. Appl. Math., 58 (1998), pp. 1878--1890.
\bibitem{Driessche-Wu-Zou01} P. van den Driessche, J. Wu and X. Zou, {\em Stabilization role of inhibitory self-connections in a delayed neural network}, Phys. D, 150 (2001), pp. 84--90.
\bibitem{Wu-Chua97} C. W. Wu and L. O. Chua, {\em A more rigious proof of complete stability of cellular neural networks}, IEEE Trams. Circuits Syst. I,44 (1997), pp. 370--371.
\bibitem{Zhang-Wei-Xu03} Q. Zhang, X. Wei and J. Xu, {\em Global exponential convergence analysis of delayed neural networks with time-varying delays}, Phys. Lett. A, 318 (2003), pp. 537--544.
\bibitem{Zeng-Huang-Wang05} Z. Zeng, D. S. Huang and Z. Wang, {\em Memory pattern analysis of cellular neural networks}, Phys. Lett. A, 342 (2005), pp. 114-128.
|