跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 13:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳慧萍
研究生(外文):Hui-Ping Chen
論文名稱:2維有限型的子移位之原始性質
論文名稱(外文):The primitive property of subshift of finite type in 2-dimensional lattice
指導教授:林松山
指導教授(外文):Song-Sun Lin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:27
中文關鍵詞:2維有限型的子移位之原始性質
外文關鍵詞:The primitive property of subshift of finite type in 2-dimensional lattice
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,討論n 階置換矩陣 的原始性質。而這些主題與2維有限型的移位之混合性質有關。
我們的目的是給定2階置換矩陣A_2 的某些必備條件,進而証得矩陣A_n 的原始性質。
In this paper, the primitivity of n-th order transition matrices A_n defined on Z_2.n are studied, this topics related to the mixing property of 2- dimensional shift of finite type.
Our purpose is to give some necessary conditions for A_2 to guarantee the primitivity of A_n.
目 錄
中文提要 …………………………………………… i
英文提要 …………………………………………… ii
誌謝 …………………………………………… iii
目錄 …………………………………………… iv
一、Introduction …………………………………………… 1
二、Preliminaries ………………………………………… 4
Definitions (2-symbols) ……………………………… 4
三、Main Theorem (2-symbols) 6
Lemmas ………………………………………………… 6
Main theorem and corollary ………………………… 10
四、Main Theorem (p-symbols) …………………………… 16
Definitions …………………………………………… 16
Lemmas …………………………………………………… 18
Main theorem and corollary…………………………… 21
References …………………………………………………… 25
[1]J.C. Ban, C.H. Hsu and S.S. Lin, Spatial disorder of Cellular Neural Network-with biased term, International J.of Bifurcation and Chaos, 12(2002), pp.525-53.
[2]J.C. Ban, K.P. Chien, C.H. Hsu and S.S. Lin, Spatial disorder of CNN-with asymmetric output function, International J.of Bifurcation and Chaos, 11(2001), pp.2085-2095.
[3]J.C. Ban and S.S. Lin Patterns Generation and Transition Matrices in Multi-Dimensional Lattices Models, submitted(2002).
[4]J.C. Ban and S.S. Lin and Y.H. Lin, Sufficient condition for the mixing property of 2-dimensional subshift of finite type,preprint(2005).
[5]J.C. Ban and S.S. Lin and C.W. Shih, Exact number of mosaic patterns in cellular neural networks, International J.of Bifurcation and Chaos, 11(2001), pp.1645-1653.
[6]J.C. Ban and S.S. Lin and Y.H. Lin, Pattern generation and spatial entropy in two-dimensional lattices models, preprint(2005).
[7]P.W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch.Rat.Mech.Anal, 150(1999), pp.281-305.
[8]J. Bell, Some threshold results for modes of myelinated nervJ.
[9]Bell and C. Cosner, Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling mydeling axons, Quart.Appl.Math., 42(1984), pp.1-14.es,Math./biosci., 54(1981), pp.181-190.
[10]R. Bellman, Introduction to matrix analysis, Mc Graw-Hill, N.Y.(1970).
[11]J.W. Cahn, Theory of crystal growth and interface motion in crystalline materials, Acta Metallurgica, 8(1960), pp.554-562.
[12]L.O. Chua, K.R Crounse, M. Hasler and P. Thiran, Pattern formation properties of autonomous cellular neural networks, IEEETrans.Circuits Systems, 42(1995), pp.757-774.
[13]S.N. Chow, J.Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems II, IEEETrans. Circuits Systems,42(1995), pp.752-756.
[14]S.N Chow, J.Mallet-Paret and E.S. Van Vleck, Dynamics of lattice differential equations, International J.of Bifurcation and Chaos,(1996), pp.1605-1621.
[15]S.N. Chow, J.Mallet-Paret and E.S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations,Random Comput.Dynam.,4(1996), pp.109-178.
[16]S.N. Chow and W. Shen, Dynamics in a discrete Nagugumo equation:Spatial topological chaos, SIAM J.Appl.Math, 55(1995), pp.1764-1781.
[17]L.O.Chua, CNN: A paradigm for complexity .World Scientific Series on Nonlinear Science, Series A, 31.World Scietific ,Singapore.(1998)
[18]L.O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Systems, 35(1998), pp.1257-1272.
[19]L.O. Chua and L. Yang, Cellular neural networks : Applications,IEEE Trans. Circuits Systems, 35(1998), pp.1273-1290.
[20]L.O. Chua and T. Roska, the CNN paradigm, IEEE Trans. Circuits Systems, 40(1993), pp.147-156.
[21]H.E Cook, D.De Fontaine and J.E Hilliard, A model for diffusion on cubic lattices and its application to the early stages of ordering, Acta Metallurgica, 17(1969), pp. 765-773.
[22]G.B Ermentrout, Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators, SIAM J.Appl.Math., 52(1992), pp.1665-1687.
[23]G.B.Ermentrout and N.Kopell, Inhibition-produced patterning in chains of coupled nonlinear oscillators, SIAM J.APPL.Math.,54(1994), pp.478-507.
[24]G.B. Ermentrout and N. Kopell and T.L. Williams, On chains of oscillators forced at one end, SIAM J. Appl.Math.,51(1991), pp.1397-1417.
[25]T. Eveneux and J.P. Laplante, Propagation failure in arrays of coupled bistable chemical reactors, J.Phys.Chem., 96(1992), pp.4931-4934.
[26]W.J. Firth, Optical memory and spatial chaos, Phys. Rev. Lett.,61(1988), pp.329-332.
[27]M. Hillert, A solid-solution model for inhomogeneous systems, Acta Metallurgica, 9(1961), pp.525-535.
[28]J.P Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47(1987),pp.556-572.
[29]J.P Keener, The effects of discrete gap junction coupling on propagation in myocardium, J.Theor.Biol.,148(1991), pp.49-82.
[30]A.L. Kimball, A. Varghese and R.L. Winslow, Simulating cardiac sinus and atrial network dynamics on the connection machine,Phys.D, 64(1993), pp.281-298.
[31]S.S. Lin and P.J. Tsai, The mixing property of 2-dimensional of subshift of finite type, preprint(2005).
[32]D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambrige University Press, New York, 1995.
[33]R.S. Mackay and J.A. Sepulchre, Multistability in networks of weakly coupled bistable units, Phys.D, 82(1995), pp.243-254.
[34]J.Mallet-Paret and S.N. Chow, Pattern formation and spatial chaos in lattice dynamical systems I, IEEE Trans. Circuits Systems, 42(1995), pp.746-751.
[35]N.G. Markly and M.E. Paul, Matrix subshifts for Z^v
symbolic dynamics, to be published in Proceedings of the London Mathematical Society.
[36]N.G. Markly and M.E. Paul, Maximal measures and entropy for Z^v subshifts of finite type.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文