# 臺灣博碩士論文加值系統

(44.222.218.145) 您好！臺灣時間：2024/02/29 13:40

:::

### 詳目顯示

:

• 被引用:0
• 點閱:115
• 評分:
• 下載:4
• 書目收藏:0
 在這篇論文中,討論n 階置換矩陣 的原始性質。而這些主題與2維有限型的移位之混合性質有關。我們的目的是給定2階置換矩陣A_2 的某些必備條件,進而証得矩陣A_n 的原始性質。
 In this paper, the primitivity of n-th order transition matrices A_n defined on Z_2.n are studied, this topics related to the mixing property of 2- dimensional shift of finite type. Our purpose is to give some necessary conditions for A_2 to guarantee the primitivity of A_n.
 目 錄中文提要 …………………………………………… i英文提要 …………………………………………… ii誌謝 …………………………………………… iii目錄 …………………………………………… iv一、Introduction …………………………………………… 1二、Preliminaries ………………………………………… 4 Definitions (2-symbols) ……………………………… 4三、Main Theorem (2-symbols) 6 Lemmas ………………………………………………… 6 Main theorem and corollary ………………………… 10四、Main Theorem (p-symbols) …………………………… 16 Definitions …………………………………………… 16 Lemmas …………………………………………………… 18 Main theorem and corollary…………………………… 21References …………………………………………………… 25
 [1]J.C. Ban, C.H. Hsu and S.S. Lin, Spatial disorder of Cellular Neural Network-with biased term, International J.of Bifurcation and Chaos, 12(2002), pp.525-53.[2]J.C. Ban, K.P. Chien, C.H. Hsu and S.S. Lin, Spatial disorder of CNN-with asymmetric output function, International J.of Bifurcation and Chaos, 11(2001), pp.2085-2095.[3]J.C. Ban and S.S. Lin Patterns Generation and Transition Matrices in Multi-Dimensional Lattices Models, submitted(2002).[4]J.C. Ban and S.S. Lin and Y.H. Lin, Sufficient condition for the mixing property of 2-dimensional subshift of finite type,preprint(2005).[5]J.C. Ban and S.S. Lin and C.W. Shih, Exact number of mosaic patterns in cellular neural networks, International J.of Bifurcation and Chaos, 11(2001), pp.1645-1653.[6]J.C. Ban and S.S. Lin and Y.H. Lin, Pattern generation and spatial entropy in two-dimensional lattices models, preprint(2005).[7]P.W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch.Rat.Mech.Anal, 150(1999), pp.281-305.[8]J. Bell, Some threshold results for modes of myelinated nervJ.[9]Bell and C. Cosner, Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling mydeling axons, Quart.Appl.Math., 42(1984), pp.1-14.es,Math./biosci., 54(1981), pp.181-190.[10]R. Bellman, Introduction to matrix analysis, Mc Graw-Hill, N.Y.(1970).[11]J.W. Cahn, Theory of crystal growth and interface motion in crystalline materials, Acta Metallurgica, 8(1960), pp.554-562.[12]L.O. Chua, K.R Crounse, M. Hasler and P. Thiran, Pattern formation properties of autonomous cellular neural networks, IEEETrans.Circuits Systems, 42(1995), pp.757-774.[13]S.N. Chow, J.Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems II, IEEETrans. Circuits Systems,42(1995), pp.752-756.[14]S.N Chow, J.Mallet-Paret and E.S. Van Vleck, Dynamics of lattice differential equations, International J.of Bifurcation and Chaos,(1996), pp.1605-1621.[15]S.N. Chow, J.Mallet-Paret and E.S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations,Random Comput.Dynam.,4(1996), pp.109-178.[16]S.N. Chow and W. Shen, Dynamics in a discrete Nagugumo equation:Spatial topological chaos, SIAM J.Appl.Math, 55(1995), pp.1764-1781.[17]L.O.Chua, CNN: A paradigm for complexity .World Scientific Series on Nonlinear Science, Series A, 31.World Scietific ,Singapore.(1998)[18]L.O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Systems, 35(1998), pp.1257-1272.[19]L.O. Chua and L. Yang, Cellular neural networks : Applications,IEEE Trans. Circuits Systems, 35(1998), pp.1273-1290.[20]L.O. Chua and T. Roska, the CNN paradigm, IEEE Trans. Circuits Systems, 40(1993), pp.147-156.[21]H.E Cook, D.De Fontaine and J.E Hilliard, A model for diffusion on cubic lattices and its application to the early stages of ordering, Acta Metallurgica, 17(1969), pp. 765-773.[22]G.B Ermentrout, Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators, SIAM J.Appl.Math., 52(1992), pp.1665-1687.[23]G.B.Ermentrout and N.Kopell, Inhibition-produced patterning in chains of coupled nonlinear oscillators, SIAM J.APPL.Math.,54(1994), pp.478-507.[24]G.B. Ermentrout and N. Kopell and T.L. Williams, On chains of oscillators forced at one end, SIAM J. Appl.Math.,51(1991), pp.1397-1417.[25]T. Eveneux and J.P. Laplante, Propagation failure in arrays of coupled bistable chemical reactors, J.Phys.Chem., 96(1992), pp.4931-4934.[26]W.J. Firth, Optical memory and spatial chaos, Phys. Rev. Lett.,61(1988), pp.329-332.[27]M. Hillert, A solid-solution model for inhomogeneous systems, Acta Metallurgica, 9(1961), pp.525-535.[28]J.P Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47(1987),pp.556-572.[29]J.P Keener, The effects of discrete gap junction coupling on propagation in myocardium, J.Theor.Biol.,148(1991), pp.49-82.[30]A.L. Kimball, A. Varghese and R.L. Winslow, Simulating cardiac sinus and atrial network dynamics on the connection machine,Phys.D, 64(1993), pp.281-298.[31]S.S. Lin and P.J. Tsai, The mixing property of 2-dimensional of subshift of finite type, preprint(2005).[32]D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambrige University Press, New York, 1995.[33]R.S. Mackay and J.A. Sepulchre, Multistability in networks of weakly coupled bistable units, Phys.D, 82(1995), pp.243-254.[34]J.Mallet-Paret and S.N. Chow, Pattern formation and spatial chaos in lattice dynamical systems I, IEEE Trans. Circuits Systems, 42(1995), pp.746-751.[35]N.G. Markly and M.E. Paul, Matrix subshifts for Z^vsymbolic dynamics, to be published in Proceedings of the London Mathematical Society.[36]N.G. Markly and M.E. Paul, Maximal measures and entropy for Z^v subshifts of finite type.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 1 藺寶珍、王瑞霞（1997）•肥胖國中生的體重控制自覺自我效力及其相關因素•護理研究，5(5)，401-412。 2 鄭心嫻、謝麗華、陳金發、謝明哲（1995）•台北高雄兩市國小高年級學童飲食與體位調查•中華民國營養學會雜誌，20，93-104。 3 劉建恆﹙2001﹚•九年一貫健康與體育新課程新使命－提升體是能降低肥胖與盡適比例•學校體育，11(7)，14-19。 4 李翠娥（2004）•體重控制介入措施對青春期體重過重女生健康體能與肥胖生理指標之影響•大專體育學刊，6(1)，255-262。 5 李彩華、方進隆（1998）•國中學生身體活動量與體適能相關研究•體育學報，25，139-148。 6 李蘭、潘文涵、陳重弘、李燕鳴（1994）•臺北市八十學年度國中新生的肥胖盛行調查－不同篩選指標的比較•中華公共衛生雜誌，13(1)，11-19。 7 陳偉德、吳康文（1993）•單純性肥胖小兒之家庭環境因子•中華民國小兒科醫學會雜誌，35(6)，536-541。 8 陳元和、林正常（2001）•八週減肥計畫介入對高中超重女生血清瘦身蛋白濃度之影響•體育學報，31，305-316。 9 陳麗玉﹙2001﹚•運動介入及飲食教育對肥胖兒童健康體能與血脂値影響之研究．體育學報，30，267-277。

 1 SingleSign-On應用在CIM系統 2 空間能力與空間認知對三維空間搜尋系統的影響 3 不同促銷類別對消費者知覺品質和知覺價值的影響 4 以個案分析觀點探討國巨併購飛利浦零件事業部之綜效與成本效益 5 智慧財產權保護碼 6 二維網格模型中多符號的花樣生成問題 7 狹窄水平雙套管中R-134a冷媒流動沸騰熱傳和氣泡特性研究 8 改善毛細泵吸迴系統在電子冷卻上之實驗研究 9 整數階與分數階廣義心搏系統的渾沌及其同步與反控制 10 整數階與分數階變革式心搏系統的渾沌及其同步與反控制 11 整數階與分數階奈米參數共振器系統的渾沌及其同步與反控制 12 分數階變革式奈米Duffing共振器系統的渾沌及其同步與反控制 13 門檻向量誤差修正模型在金融市場之運用 14 半導體材料之介觀物理特性研究 15 M/G/1之極限機率的尾端行為

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室