跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/13 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許奐勛
研究生(外文):Huan-Hsun Hsu
論文名稱:傅利葉係數,黎阿普諾夫指數,不變測度及渾沌
論文名稱(外文):Fourier Coefficients, Lyapunov Exponents, Invariant Measures and Chaos
指導教授:莊重莊重引用關係
指導教授(外文):Jonq Juang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:15
中文關鍵詞:傅利葉係數黎阿普諾夫指數不變測度渾沌
外文關鍵詞:Fourier CoefficientsLyapunov Exponentsinvariant Measureschaos
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
長久以來,在物理及工程上,常利用對一個複雜且不可預測的信號作光譜分析來判斷此信號是否渾沌。首先將此現象做數學分析的是陳鞏老師等人。他們是希望尋求一種關於渾沌動態系統以及傅利葉係數之間的關係。陳鞏老師等人找到了許多關於一個系統做n次疊代之後的傅利葉係數,可以使得這個系統的拓樸熵大於零的充分條件。在這篇論文當中,我們創新出一個針對定義在一個區間的函數,傅利葉係數,黎阿普諾夫指數和不變測度的關係。尤其我們是針對一個定義在馬可夫分割上的片段線性函數以及二次函數來討論這三種特徵量。
A complex and unpredictable frequency spectrum of a signal has long been seen in physics and engineering as an indication of a chaotic signal. The first step to understand such phenomenon mathematically was taken up by Chen, Hsu, Huang and Roque-Sol. In particular, they look for possible connections between chaotic dynamical systems and the behavior of its Fourier coefficients. Among other things, they found variety of sufficient conditions on the Fourier coefficients of the -th iterate of an interval map , for which the topological entropy of is positive. In this thesis, we explore the relationship between the Fourier coefficients of an interval map and its Lyapunov exponent and invariant measure. Specifically, the relationships between those three quantities of two family of interval maps, piecewise linear maps admitting a Markov partition and quadratic family, are considered.
1. Introduction………….…………………………………………………… …1
2. Preliminaries………….…………………….………………………………..2
2.1. Fourier Series….………………………………………………………2
2.2. Ergodic Theorey…….…………………………………………………3
2.3. Invariant Measures…….………………………………………………4
3. Main Results…………………………………………………………………6
References…………………………………………...……...…………………...15
[1] K. T. Alligood, T. D. Sauer, and J. A.Yorke, Chaos: An Introduction to Dynamical Systems,
Springer-Verlag New York, Inc(1997).
[2] V. S. Afraimovich, and S. B. Hsu, Lectures on Chaotic Dynamical Systems, AMS International
Press(2003).
[3] A. Boyarsky, and P. Gora, Laws of Chaos: Invariant Measures and Dynamical Systems in
One Dimension, Birkhauser Boston(1997).
[4] G. Chen, S. B. Hsu, and Y. Huang, Marco A. Roque-Sol, Mathematical Analysis of the Fourier
Spectrum of Chaotic Time Series., Ph.D.dissertation(2005).
[5] W. de Melo, and S. van Srien, One-Dimensional Dynamics, Springer-Verlag,N.Y.(1993).
[6] Jolley, Summation of Series, Dover Publications, Inc(1961).
[7] E. Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons Pte. Ltd(1999).
[8] C. Robinson, Dynamical Systems: Stability, Symbolic dynamics, and Chaos, CRC Press
LLC(1999).
[9] M. Rychlik, and E. Sorets, Regularity and other properties of absolutely continuous invariant
measures for the quadratic family. , Commun. Math. Phys. 150, 217-236(1992).
[10] E. M. Stein, and R. Shakarchi, Fourier Analysis: An Introduction, Princeton University
Press(2003).
[11] S. H. Strogatz, Nonlinear Dynamics and Chaos, Addison-Wesley,N.Y.(1994).
[12] M. Tsujii, On continuity of Bowen-Ruelle-Sinai measures in families of one dimensional
maps, Commun. Math. Phys. 177, 1-11(1996).
[13] P. Waltes, An Introduction to Ergodic Theory, Springer-Verlag,N.Y.(1982).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top