跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/12 11:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:侯宜穎
研究生(外文):Yi-Ying Hou
論文名稱:邊界切割方法在車牌辨識系統之應用
論文名稱(外文):A Nwe Edge Segmentaiton Method Applied to the License Plate Recognition System
指導教授:陳永平陳永平引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:85
中文關鍵詞:車牌辨識系統雙邊界判別法邊界切割法動態投影
外文關鍵詞:license plate recognitiondouble edge methodedge segmentation methodDynamic Projection WarpingDPW
相關次數:
  • 被引用被引用:5
  • 點閱點閱:589
  • 評分評分:
  • 下載下載:185
  • 收藏至我的研究室書目清單書目收藏:4
在本篇論文中,提出兩個新的應用方法來解決車頭燈及散熱器還有光線變化跟複雜的車子圖騰對車牌辨識系統所造成的干擾。在此論文的第二章中,提出一個名為”雙邊界判斷法”(double edge method)來處理車頭燈跟散熱器所造成的干擾,導致係系統誤判。此原理是採用車牌與車頭燈和散熱器不同的特殊特徵來判斷候選區域中使否含有車牌。而這一個方法可以將車牌擷取的成功率提升到98.4%。除此之外,在第四章中會介紹邊界切割方法(edge segmentation method),這一個方法是用來處理光線變化跟複雜圖騰所造成的切割字元方面的困難,而且成功的將字元切割成功率提升到99.67%。
This thesis proposes two methods, the double edge method and the edge segmentation method, to enhance the accuracy of the LPR system. After the process of projection extraction method, some potential license plate areas can be found in an image, which may includes the headlamps and radiators. The double edge method is then utilized to determine the precise area of the license plate, not the areas of the headlamps or radiators. With the double edge method, the accuracy of the license plate extraction is highly increased up to 98.4%. As for the edge segmentation method, it is proposed to extract the characters from the license plate area just obtained and this area is often badly influenced by illumination variation and complex texture of a vehicle. With the edge segmentation method, the character extraction rate can be increased up to 99.67%. Finally, experimental results have been also included to demonstrate the success of these two proposed methods.
Chinese Abstract ………………………………………………………………….…..i
English Abstract ……………………………………………………………………...ii
Acknowledgement …………………………………………………………………...iii
Contents ……………………………………………………………………………...vi
Index of Figures ………………………………………………………………………v
Index of Tables ………………………………………………………………………iix

Chapter 1 ﹕Introduction …………………………………………………………..1
1.1 Preliminary ………………………………………………………………..…1
1.2 Problems statements …………………………………………………………2
1.3 The Three Steps of the LPR System …………………………………………4
Chapter2 ﹕The License Plate Extraction …………………………………………6
2.1 Introduction ………………………………………………………………….6
2.2 Spatial Mask …………………………………………………………………7
2.3 Moving Average ……………………………………………………………10
2.4 License Plate Segmentation ………………………………………………..13
2.5 Double Edge Method ………………………………………………………15
2.6 Binarilization ……………………………………………………………….19

Chapter3 ﹕The License Plate Character Extraction ……………………………22
3.1 Introduction ………………………………………………………………..22
3.2 Character Edge Detection …………………………………………………..22
3.3 Edge Segmentation …………………………………………………………24
3.4 The Over Segmentation Integration ………………………………………..29
3.5 The candidate character blocks erasing by the character factors …………..32
3.6 License Plate Recovery and Inclined License Plate Compensation ……….37
3.7 License plate character normalization ……………………………………...38

Chapter4 ﹕License Plate Character Recognition ……………………………….40
4.1 Introduction ………………………………………………………………...40
4.2 Dynamic Programming Technique …………………………………………41
4.3 Feature Vector of Character Recognition …………………………………...45
4.4 Dynamic Projection Warping ………………………………………………48
4.4.1 Fundamental Concept of DPW …………………………………….49
4.4.2 Dynamic Projection Warping ………………………………………54

Chapter5 ﹕Experiments of Proposed System …………………………………...59
5.1 License Plate Extraction ……………………………………………………59
5.2 Character Extraction ……………………………………………………….62
5.2.1 The Extraction Rate in Different Contrast …………………………63
5.2.2 The Comparison between Different Extraction Method …………..65
5.3 Character Recognition …………………………………………………….66

Chapter6 ﹕Conclusion …………………………………………………………….69
Reference ……………………………………………………………………………71
[1] Nafiz Arica, and Fatos T. Yarman-Vural, “Optical Character Recognition for Cursive Handwriting,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, NO. 6, June 2002.
[2] R.E. Bellman, Dynamic Programming, Princeton University Press, Princeton, New Jersey, USA 1957.
[3] P. Comelli, P. Ferragina, M.N. Granieri, and F. Stabile, “ Optical recognition of motor vehicle license plates”, IEEE Trans. on Vehicular Technology, Vol. 44, pp.790-799, 1995.
[4] M. Fahmy, “Automatic number-plate recognition: neural network approach”, Vehicle Navigation and Information Systems Conference, pp. 99-101, Aug., 1994.
[5] Da-Shan Gao and Jie Zhou, “Car license plates detection from complex scene”, 5th International Conference on Signal Processing Proceedings, Vol. 2, pp. 1409-1414, Aug., 2000.
[6] Yen-Tseng Hsu, Chan-Ben Lin, Sea-Chon Mar, and Shun-Feng Su, “High Noise Vehicle Plate Recognition Using Grey System”, Journal of Grey System, Vol. 10, No. 3, pp. 193-208, 1998.
[7] K. Kanayama, Y. Fujikawa, K. Fujimoto, and M. Horino, “Development of vehicle-license number recognition system using real-time image processing and its application to travel-time measurement,” IEEE Veh. Technol., pp. 798-804, 1991.
[8] Dong-Su Kim, et al, ”Automatic Car License Plate Extraction Using Modified Generalized Symmetry Transform and Image Warping,” ISIE CNF 2001.
[9] K. K. Kim, et al, ”Learning Based Approach of License Plate Recognition,” IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing, vol. 2 ,pp 614-623, 2000.
[10] Frank L. Lewis, Vassilis L. Syrmos, Optimal Control.
[11] Mei-Yu, Yong Deak Kim, ”An Approach to Korea License Plate Recognition Based on Vertical Edge Matching,” Systems, Man, and Cybernetics, 2000 IEEE International Conference on , Volume: 4 , 8-11 Oct. 2000 Pages:2975 - 2980 vol.4.
[12] J. A. G. Nijhuis, M.II. ter Brugge, K.A. Helmholt, J. P. W. Pluim, L. Spaanenburg, and M. A. Westenberg, “Car License Plate Recognition with Neural Networks and Fuzzy Logic,” Volume 5, 27 Nov.-1 Dec. 1995 Page(s):2232 - 2236 vol.5.
[13] N. Ostu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Transactions on System, Man, and, Cyber-netics, Vol. SMC-9, pp62-66, 1979.
[14] S.H. Park, K.I. Kim, K. Jung, and H.J. Kim, “Locating car license plates using neural networks”, Electronics Letters, Vol. 35, pp.1475-1477, Aug., 1999.
[15] Lawrence Rabiner, Biing-Hwang Junag, Fundamentals of Speech Recognition, Prentice Hall Co Ltd., 1993.
[16] Muhammad Sarfraz, Mohammed Jameel Ahmed, and Syed A. Ghazi, “Saudi Arabian License Plate Recognition System,” Proceeding of the 2003 International Conference on Geometric Modeling and Graphics.
[17] Shapiro, V. and Gluhchev, G., “Multinational License Plate Recognition System: Segmentation and Classification,” Volume 4, 23-26 Aug. 2004 Page(s):352 - 355 Vol.4.
[18] T.H. Wang, F.C. Ni, K.T. Li, Y.P. Chen,”Robust License Plate Recognition based on Dynamic Projection Warping,” IEEE International Conference on Networking, Sensing and Control, March., 2004.
[19] Xiangyun Ye, Mohamed Cherret, and Ching Y. Suen, “Stroke-Model-Based Character Extraction form Gray-Level Document Images,” IEEE Transaction on Image Processing, VOL. 10, NO. 8, August 2001.
[20] Jian-Yang, Zeng, “A research on Plate Localization, Preprocessing and Recognition of License Plate Recognition System,” T NCTU CLENG 1999 pt.7:3.
[21] 陳麗奾, “在未設限環境下車牌的定位與辨識,” 國立台灣師範大學資訊教育研究所碩士論文, 1999.
[22] 趙慕霖, ”架構於數位訊號處理器之車牌辨識系統,” 國立交通大學電機與控制工程研究所, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top