|
[1] National Institute of Standards and Technology (NIST), Advanced Encryption Standard (AES), National Technical Information Service, Springfield, VA 22161, Nov. 2001. [2] National Institute of Standards and Technology (NIST), Data Encryption Standard (DES), National Technical Information Service, Springfield, VA 22161, Oct. 1999. [3] W. Stallings, Cryptography and Network Security: Principles and Practice. 3rd ed., Prentice-Hall Inc., Upper Saddle River, N.J., 2003. [4] E. Barkan, and E. Biham, “In How Many Ways Can You Write Rijndael?”, Proceedings of ASIACRYPT, Dec. 1-5, 2002, pp. 160-175, Springer-Verlag, 2002. [5] P. Fergguson and G. Huston, “What is a VPN?—Part I,” The Internet Protocol Journal, vol. 1, pp. 2–19, June 1998. http://www.cisco.com/warp/public/759/. [6] J. Daemen, and V. Rijmen, “AES Proposal: Rijndael,”AES Algorithm Submission, Sep. 3, 2000. [7] A. Dandalis, V. K. Prasanna, and J. D. P. Rolim, “A comparative study of performance of AES final candidates using FPGAs,” Cryptographic Hardware and Embedded Systems (CHES) 2000, vol. 1965 of LNCS, pp. 125–140, Springer-Verlag, Aug. 2000. [8] K. Gaj and P. Chodowiec, “Fast implementation and fair comparison of the final candidates for advanced encryption standard using field programmable gate arrays,” Proc. RSA Security Conf., Cryptographer’s Track, vol. 2020 of LNCS, pp. 84–99, Springer-Verlag, Apr. 2001. [9] P. Chodowiec, K. Gaj, P. Bellows, and B. Schott, “Experimental testing of the Gigabit IPSec compliant implementations of Rijndael and triple DES using SLAAC-1V FPGA accelerator board,” Proc. Information Security Conf. (ISC), vol. 2200 of LNCS, pp. 220–234, Springer-Verlag, Oct. 2001. [10] K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, “A fully pipelined memoryless 17.8 Gbps AES-128 encryptor,” Proc. Int. Symp. Field-Programmable Gate Arrays (FPGA), (Monterey), pp. 207–215, ACM Press, 2003. [11] K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, “A fully pipelined memoryless 17.8 Gbps AES-128 encryptor,” Proc. Int. Symp. Field-Programmable Gate Arrays (FPGA), (Monterey), pp. 207–215, ACM Press, 2003. [12] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and performance testing of a 2.29-GB/s Rijndael processor,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 569–572, Mar. 2003. [13] V. Fischer and M. Drutarovsky, “Two methods of Rijndael implementation in reconfigurable hardware,” Cryptographic Hardware and Embedded Systems (CHES) 2001, vol. 2162 of LNCS, pp. 77–92, Springer-Verlag, May 2001. [14] S. Morioka and A. Satoh, “A 10Gbps full-AES crypto design with a twisted-BDD S-Box architecture,” Proc. IEEE Int. Conf. Computer Design (ICCD), (Freiburg, Germany), pp. 98–103, Sept. 2002. [15] K. Gaj and P. Chodowiec. Comparison of the hardware performance of the AES candidates using reconfigurable hardware. Proc. 3rd AES Conf. (AES3). [Online]. Available: http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html [16] M. McLoone and J. V. McCanny, “Rijndael FPGA implementation utilizing look-up tables,” IEEE Workshop on Signal Processing Systems, Sept. 2001, pp. 349–360. [17] M. McLoone and J.V. McCanny, “Apparatus for Selectably Encrypting and Decrypting Data,” UK Patent Application No. 0107592.8, Filed 27, March 2001. [18] V. Rijmen, “Efficient implementation of the Rijndael S-box.” http://www.esat.kuleuven.ac.be/˜rijmen/rijndael/sbox.pdf. [19] A. Satoh, S. Morioka, K. Takano, S. Munetoh, “A Compact Rijndael Hardware Architecture with S-box Optimization”, ASIACRYPT 2001, Lecture Notes in Computer Science 2248, Springer, 2001, pp. 239-254 [20] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC implementation of the AES SBoxes,” CT-RSA 2002, vol. 2271 of LNCS, pp. 67–78, Springer-Verlag, 2002. [21] S. Mangard, M. Aigner, and S. Dominikus, “A highly regular and scalable AES hardware architecture,” IEEE Trans. Computers, vol. 52, pp. 483–491, Apr. 2003. [22] Xinmiao Zhang; Parhi, K.K., “High-speed VLSI architectures for the AES algorithm”, IEEE Trans. VLSI Systems, Vol 12, Issue 9, pp. 957-967, Sept. 2004 [23] T.-F. Lin, C.-P. Su, C.-T. Huang, and C.-W. Wu, “A high-throughput low-cost AES cipher chip,” Proc. 3rd IEEE Asia-Pacific Conf. ASIC, (Taipei), pp. 85–88, Aug. 2002. [24] H. Kuo and I. Verbauwhede, “Architectural optimization for a 1.82 Gbits/sec VLSI implementation of the AES Rijndael algorithm,” Cryptographic Hardware and Embedded Systems (CHES) 2001, vol. 2162 of LNCS, Springer-Verlag, May 2001. [25] J. H. Shim, D.W. Kim, Y. K. Kang, T.W. Kwon, and J. R. Choi, “A Rijndael cryptoprocessor using shared on-the-fly key scheduler,” Proc. 3rd IEEE Asia-Pacific Conf. ASIC, (Taipei), pp. 89–92, Aug. 2002. [26] J. Guajardo and C. Paar. “Efficient Algorithms for Elliptic Curve Cryptosystems” Advances in Cryptology—CRYPTO ’97, Lecture Notes in Computer Science, vol. 1294 pp. 342–356. Springer-Verlag, August 1997. [27] A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao, and P. Rohatgi. “Efficient Rijndael Encryption Implementation with Composite Field Arithmetic” Workshop on Cryptographic Hardware and Embedded Systems (CHES2001), pp. 175–188, May 2001. [28] C Paar, “Efficient VLSI Architecture for Bit-Parallel Computations in Galois Fields” PhD Thesis, Institute for Experimental Mathematics, University of Essen, Germany, 1994 [29] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “Unified hardware architecture for 128-bit block ciphers AES and Camellia”, Cryptographic Hardware and Embedded Systems (CHES) 2003. Aug. 2003, Springer-Verlag. [30] IEEE P1363. “IEEE Standard Specifications for Public-Key Cryptography” IEEE Computer Society, August 2000. [31] L. Reyzin, B. Kaliski, “Storage-Efficient Basis Conversion Techniques” Contribution to IEEE P1363a, February 2000. [32] J.L. Fan and C. Paar. “On Efficient Inversion in Tower Fields of Characteristic Two” International Symposium on Information Theory, page 20. IEEE, June 1997. [33] M. H. Jing, Y. H. Chen, Y. T. Chang, and C. H. Hsu, “The design of a fast inverse module in AES,” Proc. Int. Conf. Info-Tech and Info-Net, vol. 3, Beijing, China, Nov. 2001, pp. 298–303. [34] S. F. Hsiao, M. C. Chen, C. S. Tu, “Memory-Free Low-Cost Designs of Advanced Encryption Standard Using Common Subexpression Elimination for Sunfunctions in Transformations” IEEE Trans. Circuit and Systems, VOL. 53, NO. 3, MARCH 2006 [35] C. P. Su, C. L. Horng, C. T. Huang, C. W Wu, “A configurable AES processor for enhanced security” Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific Vol. 1 Page(s):361 - 366 Jan. 2005 [36] Chih-Hsu Yen, Tsung-Yao Pai, and Bing-Fei Wu, “The Implementations of the Reconfigurable Rijndael Algorithm with Throughput of 4.9Gbps” Proceedings of 16th VLSI Design/CAD Symposium, 2005. [37] Integrator/LM-EP20K600E+ user Guide http://www.arm.com/pdfs/DUI0146C_LM600.pdf [38] J. Wolkerstorfer, E. Oswald, and M. Lamberger, “An ASIC implementation of the SBoxes,” CT-RSA 2002, vol. 2271 of LNCS, pp. 67–78, Springer-Verlag, 2002.
|