跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李奕廷
研究生(外文):Yi-Ting Li
論文名稱:應用於功率積體電路之700伏特LIGBT元件設計與結構改善
論文名稱(外文):Design and Structure Improvement of 700V LIGBT for application of Power IC
指導教授:張隆國
指導教授(外文):Lon-Kou Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:100
中文關鍵詞:RESURF陽極短路間斷式陽極
外文關鍵詞:RESURFShorted-anodeSegmented-anode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:83
  • 收藏至我的研究室書目清單書目收藏:0
功率積體電路即是將高壓功率元件與低壓控制電路整合於同一晶片上之積體電路,提供更完整的功能與較低的成本。由於橫向式絕緣閘雙極性電晶體(LIGBT)為橫向結構,並具有耐高壓與導通大電流的特性,使其適合應用於功率積體電路。元件耐壓方面,主要為利用RESURF的原理來提高耐壓。元件關閉時,內部少數載子殘留的現象使得其關閉延遲,造成較慢的切換速度而限制了應用範圍,關閉時間在10μs的數量級。本論文將針對傳統LIGBT元件結構關閉延遲的缺點,參考採用兩種改善結構,分別為陽極短路結構與間斷式陽極結構,將關閉時間降至200ns的數量級。相對於傳統LIGBT結構,兩種改善結構雖然加快關閉速度,卻也增加導通電阻與Onset voltage。其中,間斷式陽極結構的導通電阻與Onset voltage則低於陽極短路結構,並且在元件使用面積上更是節省20~30%。本論文亦提出元件製程參數設計流程,兩種改善結構的製程與傳統LIGBT結構相同,且配合台灣目前的基本製程,不需再多加額外光罩。模擬方面則使用Medici與Davinci電性模擬軟體,對傳統LIGBT結構以及兩種改善結構進行模擬與分析。
The power integrated circuit (PIC) combines high-voltage power devices with low-voltage circuit on a chip. PICs provide total solutions for the implementation of power systems. The Lateral insulated-gate bipolar transistors (LIGBTs) have the lateral structures that make them the promising power devices for PIC applications due to their high breakdown voltage, high current handling capability, and applicable isolation capability. In the primitive LIGBT, the principle of RESURF (Reduced Surface Field) is applied in the improved LIGBT to obtain high breakdown voltage. However, in the LIGBT the existence of abundant internal minority-carriers injected within the on state will delay the turn-off time about 10μs. The slow switching speed makes the applications of the primitive LIGBTs be limited seriously. Therefore, the improved LIGBT structure are studied and developed in this thesis. Thus, the shorted-anode LIGBT and the segmented-anode LIGBT are utilized for decreasing the turn-off time from 10μs down to 200ns. But they also increase the value of on resistance and onset voltage, where the segmented-anode LIGBT has lower value of on resistance and onset voltage. Furthermore, the segmented-anode can save 20~30% device area from shorted-anode LIGBT. This thesis also presents the design procedures of process parameters. The improved structures and the primitive structure can be used for the fundamental process in Taiwan and do not need any other masks. Through the aid of Medici and Davinci computer aided design tool, the primitive structure and two improved ones are simulated.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖例 vi
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 1
1.3 論文架構 3
第二章 元件理論與特性 4
2.1 前言 4
2.2 功率元件選擇 5
2.3 回顧LIGBT的發展 7
2.4 元件耐高壓與操作原理 11
第三章 LIGBT元件結構參數估算 30
3.1 RESURF形成分析 30
3.1.1 定性分析 30
3.1.2 定量分析 32
3.2 LIGBT結構規劃與參數估算 39
3.2.1 傳統LIGBT結構規劃 40
3.2.2 磊晶層參數估計 41
第四章 LIGBT的改善結構設計 47
4.1 傳統LIGBT結構 47
4.2 陽極短路結構 50
4.3 間斷式陽極與間斷式陰極結構 55
4.4 間斷式陽極結構 57
第五章 元件參數設計、特性模擬與分析 61
5.1 傳統LIGBT結構的模擬與分析 61
5.2 LIGBT結構改善的模擬與分析 79
5.2.1 陽極短路結構模擬與分析 80
5.2.2 間斷式陽極結構模擬與分析 85
5.3 改善結構的比較 92
第六章 結論與展望 97
6.1 結論 97
6.2 展望 98
參考文獻 99
[1] M. I. C. Simas, P. Santos, P. Casimiro, and M. Lanca, “Smart power in MOS technologies-an overview,” Proc. IEEE International Symposium on Industrial Electronics, ISIE '97, vol.2, 1997, pp.371 – 376.
[2] B. J. Baliga, “An overview of smart power technology,” IEEE Transactions on Electron Devices, vol.38, no.7, 1991, pp.1568 – 1575.
[3] F. Udrea, D. Garner, K. Sheng, A. Popescu, H. T. Lim, and V. I. Milne, “SOI power devices,” Electronics & Communication Engineering Journal, vol.12, no.1, 2000, pp.27 – 40.
[4] T. K. H. Starke, P. M. Holland, S. Hussain, W. M. Jamal, P. A. Mawby, and P. M. Igic, “Highly effective junction isolation structures for PICs based on standard CMOS Process,” IEEE Transactions on Electron Devices, vol.51, no.7, 2004, pp.1178 – 1184.
[5] P. A. Mawby, T. K. H. Starke, P. M. Holland, S. Hussain, W. M. Jamal, and P. M. Igic, “Advanced junction isolation structures for Power Integrated Circuit technology,” 24th International Conference on Microelectronics, vol.1, 2004, pp.17 – 22.
[6] M. Stoisiek, K. -G. Oppermann, U. Schwalke, and D. Takacs, “A dielectric isolated high-voltage IC-technology for off-line applications,” Proc. of the 7th International Symposium on Power Semiconductor Devices and ICs, ISPSD '95, 1995, pp.325 – 329.
[7] A. L. Robinson, D. N. Pattanayak, M. S. Adler, B. J. Baliga, and E. J. Wildi, “Lateral insulated gate transistors with improved latching characteristics,” IEEE Electron Device Letters, vol.7, no.2, 1996, pp.61 – 63.
[8] A. Nezar, P. K. T. Mok, and C. A. T. Salama, “Latch-up prevention in insulated gate bipolar transistors,” Proc. of the 5th International Symposium on Power Semiconductor Devices and ICs, ISPSD '93, 1993, pp.236 – 239.
[9] Jun Cai, Keng Foo Lo, and J. K. O. Sin, “A latch-up immunized lateral trench-gate conductivity modulated power transistor,” Proc. of the 7th International Symposium on Physical and Failure Analysis of Integrated Circuits, 1999, pp.168 – 172
[10] T. P. Chow, B. J. Baliga, D. N. Pattanayak, and M. S. Adler, “Comparison of p-channel lateral insulated-gate bipolar transistors with and without collector shorts,” IEEE Electron Device Letters, vol.11, no.5, 1990, pp.184 – 186.
[11] J. K. O. Sin, C. A. T. Salama, and L. Z. Hou, “Analysis and characterization of the hybrid Schottky injection field effect transistor,” International Electron Devices Meeting, vol.32, 1986, pp.222 – 225.
[12] J. K. O. Sin, and S. Mukherjee, “Lateral insulated-gate bipolar transistor (LIGBT) with a segmented anode structure,” IEEE Electron Device Letters, vol.12, no.2, 1991, pp.45 – 47.
[13] D. A. Neamen, Semiconductor Physics and Devices, McGraw-Hill Science Publishing Company, 2002.
[14] B. J. Baliga, Power Semiconductor Devices, PWS. Publishing Company, 1995.
[15] J. A. Appels, and H. M. J. Vaes, “High voltage thin layer devices (RESURF devices),” International Electron Devices Meeting, vol.25, 1979, pp.238 – 241.
[16] A. W. Ludikhuize, “A review of RESURF technology,” Proc. the 12th International Symposium on Power Semiconductor Devices and ICs, 2000, pp.11 – 18.
[17] M. Imam, M. Quddus, J. Adams, and Z. Hossain, “Efficacy of charge sharing in reshaping the surface electric field in high-voltage lateral RESURF devices,” IEEE Transactions on Electron Devices, vol.51, no.1, 2004, pp.141 – 148.
[18] M. R. Simpson, P. A. Gough, F. I. Hshieh, and V. Rumennik, “Analysis of the lateral insulated gate transistor,” Proc. International Electron Devices Meeting, vol.31, 1985, pp.740 – 743.
[19] P. A. Gough, M. R. Simpson, and V. Rumennik, “Fast switching lateral insulated gate transistor,” Proc. International Electron Devices Meeting, vol.32, 1986, pp.218 – 221.
[20] Lon-Kou Chang, and Ming-Yui Tsai, “A novel structure of LIGBT with 3D RESURF junction and segmented-anode-segmented-cathode,” Proc. The Fifth International Conference on Power Electronics and Drive Systems, PEDS 2003, vol.1, 2003, pp.49 – 54.
[21] J. K. O. Sin, and S. Mukherjee, “Analysis and characterization of the segmented anode LIGBT,” IEEE Transactions on Electron Devices, vol.40, no.7, 1993, pp.1300 – 1306.
[22] T. Yamaguchi, and S. Morimoto, “Process and device design of a 1000-V MOS IC,” IEEE Transactions on Electron Devices, vol.29, no.8, 1982, pp.1171 – 1178.
[23] M. R. Simpson, “Analysis of negative differential resistance in the I-V characteristics of shorted-anode LIGBT's,” IEEE Transactions on Electron Devices, vol.38, no.7, 1991, pp.1633 – 1640.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top