跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/03/01 09:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃博文
論文名稱:生物粒子與微米球液珠之介電泳與介電濕潤研究應用於防生物沾黏晶片
論文名稱(外文):Studies on EWOD and DEP of Bioparticle and Microsphere Droplets for Anti-Biofouling Chips
指導教授:范士岡
學位類別:碩士
校院名稱:國立交通大學
系所名稱:奈米科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:97
中文關鍵詞:電動力數位微流體介電濕潤介電泳實驗室晶片
外文關鍵詞:electrokinetic manipulationcell chipelectrowetting-on-dielectric (EWOD)dielectrophoresis (DEP)Lab-on-a-Chip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以電動力以操控數位微流體及生物微粒子。其中數位微流體系統是以微液滴作為液體傳輸單位的微流體系統,其主要優點包含不需流道設計、低功率消耗與製程簡單等等。而另一電動力操控技術-介電泳,則是利用微電極所產生的不均勻電場可對蛋白質或細胞等生物分子進行濃縮、分離、定位等操控技術。本研究以整合介電泳技術於數位微流體系統為目標,展示出量化細胞濃縮比率之介電泳式介電濕潤整合性生物晶片,以及利用微米球極化現象應用之光閥元件,以其應用於防生物沾黏晶片。
本研究以介電濕潤進行封裝式、微天線式、以及共平面式微液滴之傳送,比較微液滴傳送之差異及生物應用。此外,利用不對稱式介電濕潤現象,完成微液滴之雙向傳輸系統。同時也發展介電泳操控技術,對於蛋白質分子與微米粒子之極化現象之實驗及討論。最後藉由定量濃縮之整合性細胞生物晶片,以及微米球極化現象之簡易型光閥元件。茲以此二結果印證介電泳與介電濕潤兩技術可整合於同一晶片,以期未來達到無機械結構且全由電動力操控之防生物沾黏之實驗室晶片。
中文摘要...........................................i
Abstract............................................ii
致謝..............................................iii
目錄..............................................v
圖目錄...........................................viii
表目錄
第一章 緒論......................................1
1.1 前言........................................1
1.2 數位微流體式實驗室晶片......................2
1.3 研究目的....................................6
1.4 本論文之組織架構............................6
第二章 介電濕潤之數位微流體原理與實作.............9
2.1 文獻回顧....................................9
2.2 介電濕潤元件製作...........................15
2.2.1介電濕潤晶片光罩設計....................15
2.2.2介電濕潤晶片製作..........................15
2.3 介電濕潤元件實驗與結果.....................19
2.3.1 介電濕潤元件實驗架構....................19
2.3.2介電濕潤元件實驗結果....................21
2.4 開放式介電濕潤元件.........................22
2.4.1 引言...................................22
2.4.2 開放式介電濕潤元件實驗架構.............24
2.4.3開放式介電濕潤晶片光罩設計..............25
2.4.4 開放式介電濕潤晶片製作.................25
2.4.5 開放式介電濕潤元件實驗結果.............26
2.5 不對稱電濕潤現象...........................28
2.5.1 引言...................................28
2.5.2 不對稱介電濕潤元件雙向液滴傳輸實驗架構.30
2.5.2不對稱介電濕潤元件雙向液滴傳輸之光罩設計32
2.5.3 不對稱介電濕潤元件雙向液滴傳輸之製作...32
2.5.4 不對稱介電濕潤元件雙向液滴傳輸實驗結果.33
第三章 介電泳動文獻回顧..........................35
第四章 介電濕潤介電泳整合元件....................40
4.1 實驗架構..................................40
4.2 細胞樣本及等張緩衝液製備..................41
4.3 介電濕潤介電泳整合元件製備................42
4.4 介電濕潤介電泳整合元件實驗結果............43
4.5 介電濕潤介電泳整合元件實驗結果量化分析....45
4.6 微米球之介電濕潤介電泳整合元件............47
第五章 微米球極化現象實驗與應用..................50
5.1 引言......................................50
5.2 微米球極化現象之實驗架構..................51
5.3 微米球極化現象之元件製作..................52
5.4 微米球極化現象之實驗結果..................53
5.5 結合微米球極化現象之光閥設計於介電濕潤元件57
第六章 蛋白質溶液於介電濕潤元件上操作之探討......60
6.1 文獻回顧..................................60
6.2 生物污損效應..............................68
6.3 實驗架構..................................70
6.4 蛋白質介電泳動............................71
6.4.1 生物樣本製備..........................71
6.4.2 介電泳動元件設計及製作................72
6.4.3 介電泳動測試實驗結果..................74
6.5 蛋白質溶液於介電濕潤元件上驅動測試........75
6.6 蛋白質溶液沾黏程度量化比較測試............77
第七章 結論與未來展望............................82
參考文獻.........................................84
1. 零組件雜誌(Components Time), 129 期, 2002 年7 月
2. A. Berg and T.S.J. Lammerink, “Micro Total Analysis Systems: microfluidic aspects, integration concept and applications,“ Topics in Current Chemistry, vol. 194, pp. 22-49, 1998
3. P. R. Selvaganapathy, E. T. Carlen, C. H. Mastrangelo, ”Recent progress in microfluidic devices for nucleic acid and antibody assays”, Proceedings of the IEEE, vol. 91, no. 6, pp. 954-975, June 2003
4. J.-W Hong, V. Studer, G. Hang, W. F. Anderson, S. R. Quake, “Ananoliter-scale nucleic acid processor with parallel architecture,” Nature Biotechnology, vol. 22, pp. 435-439, April 2004
5. M. A. Moses, H. Brem, R. Langer, “Advancing the field of drug delivery: Taking aim at cancer,” Cancer Cell, vol. 4, pp. 337-341, November 2003.
6. R. Langer, D. A. Tirrell, “Designing materials for biology and medicine,” Nature, vol. 428, pp. 487-490, April 2004.
7. G. Voskerician, M. S. Shive, R. S. Shawgo, H. Recum, J. M. Anderson, M. J. Cima, R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials, vol. 24, pp. 1959–1967, 2003
8. P. J. Burke, “Nano-dielectrophoresis: Electronic Nanotweezers,” in Encyclopedia of Nanoscience and Nanotechnology, vol. 6, pp. 623-641, H.S. Nalwa, Ed., American Scientific Publishers, 2004.
9. A. Manz, N. Graber, H. M. Widmer, “Miniturized total chemical analysis system: a novel concept for chemical sensing,” Sensor and Actuators B, vol. 1, pp. 244-248, 1990
10. M. Northrup, M.-T Ching, R. M. White, R. T. Watson, ”DNA amplification with a microfabricated reaction chamber,“ IEEE International Conference on Solid State Sensors and Actuators, TRANSDUCERS, pp. 924-926, Yokohama, 1993
11. D. Sobek, A. M. Young, M. L. Gray, S. D. Senturia, “A microfabricated flow chamber for optical measurements in fluids,” IEEE Micro Electro Mechanical Systems, Proceedings, pp.219-224, 1993
12. A.T. Woolley, R.A. Mathies, “Ultra-high-speed DNA sequencing using capillary electrophoresis chips,” Analytical Chemistry, vol. 67, pp. 3676-3680, 1995
13. Y.-H, S.-H. Joo, M. Duhon, M. Heller, B. Wallace, X. Xu, “Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays,” Analytical Chemistry, vol. 74, pp. 3362-3371, 2002
14. D. M. Pirone,C. S. Chen, “Using lab-on-a-chip technologies to understand cellular mechanotransduction,” Lab-On-Chips for Cellomics, vol. 16, pp. 1303-1313, H. Anderson, A. van den Berg, Ed., Kluwer Academic, 2004
15. A. Ashkin, J. M. Dziedzic, T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature, vol. 330, no. 6150, pp. 769-771, 1987
16. E.W.H. Jager, O. Inganas, I. Lundstrom, “Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation,“ Science, vol. 288, no. 5475, pp. 335-2338, 2000
17. H. A. Pohl, “The Motion and Precipitation of Suspensoids in Divergent Electric Fields,” Journal of Applied Physics, vol. 22, pp. 869, 1951
18. H. A. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, UK, 1987
19. R .S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, G. M. Whiteside, ”Patterning proteins and cells using soft lithography,” Biomaterials, vol. 20, no. 23/24, pp.2363-2376, 1999
20. J. Suehiro, R. Pethig, “The dielectrophoretic movement and positioning of a biological cell using a three-dimensional grid electrode system,” Journal of Physics D: Applied Physics, vol. 31, pp. 3298-3305, 1998
21. D. S. Gray, J. L. Tan, J. Voldman, C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosensors and Bioelectronics, vol. 19, pp. 771–780, 2004
22. M. G. Pollack, A. D. Shenderov, R. B. Fair, “Electrowetting-based actuation of droplets for integrated microfluidics,” Lab-on-a-chip, vol. 2, pp. 96-101, 2002
23. M. G. Pollack, R. B. Fair, A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Applied Physics Letters, vol. 77, no.11, pp. 1725-1726, September 2000.
24. S.-K Cho, H. Moon, and C.-J. Kim, ”Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” Journal of Microelectromechanical Systems, vol. 12, no.1, pp. 70-80, February 2003
25. S.-K. Fan, C. Hashi, and C.-J. Kim, “Manipulation of multiple droplets on NxM grid by cross-reference EWOD driving scheme and pressure-contact packaging,” IEEE Conf. Micro Electro Mechanical Systems, pp. 694-697., Kyoto, Japan, January 2003.
26. M. Washizu, “Electrostatic actuation of liquid droplets for microreactor applications,” IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 732-737, July/August 1998.
27. J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.-J. Kim, “Electrowetting and electrowetting-on-dielectric for microscale liquid handling,” Sens. Actuators, Phys. A, vol. 95, pp. 259–268, 2002.
28. H. Moon, S.-K. Cho, R. L. Garrell, C.-J. Kim, “Low voltage electrowetting-on-dielectric,” Journal of Applied Physics, vol. 92, no. 7, pp. 4080-4087, October 2002.
29. V. Srinivasan, V. K. Pamula, R. B. Fair, “Droplet-based microfluidic lab-on-a-chip for glucose detection,” Analytica Chimica Acta, vol. 507, pp. 145–150, 2004.
30. U.-C. Yi., C.-J Kim, “Soft printing of droplets pre-metered by electrowetting,” Sensors and Actuators A, vol. 114, pp. 347–354, 2004
31. S.-K. Cho and C.-J. Kim, “Particle separation and concentration control for digital microfluidic systems,” IEEE Conf. MEMS, pp. 686-689, Kyoto, Japan, January 2003.
32. A. R. Wheeler, H. Moon, C.-J. Kim, J. A. Loo, and R. L. Garrell, “Electrowetting-based microfluidics for analysis of peptides and proteins by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry,” Analytical Chemistry, vol. 76, pp. 4833-4838, 2004.
33. T. A. Sammarco and M. A. Burns, “Thermocapillary pumping of discrete drops in microfabricated analysis devices,” AIChE J., vol. 45, no. 2, pp. 350-366, 1999
34. O. D.Velev,B. G. Prevo,K. H. Bhatt, “On-chip manipulation of free droplets,” Nature, vol. 426, pp. 415-516, DECEMBER 2003.
35. J. A. Schwartz, J. V. Vykoukal, P. R. C. Gascoyne, “Droplet-based chemistry on a programmable micro-chip,” Lab-on-a-Chip, vol. 4, pp. 11–17, 2004.
36. A. Wixforth, “Acoustically driven planar microfluidics,” Superlattices and Microstructures, vol. 33, pp. 289-296, 2003
37. D. S. Gray, J. L. Tan, J. Voldman, C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosensors and Bioelectronics, vol. 19, pp. 771–780, 2004
38. M. G. Lippmann, “Relations entre les phénomènes electriques et capillaires,”
Ann. Chim. Phys., vol. 5, no. 11, pp. 494–549, 1875.
39. H. Matsumoto and J. E. Colgate, “Preliminary investigation of micropumping based on electrical control of interfacial tension,” Proc. IEEE MEMS Workshop, pp. 105–110, Napa Valley, CA, February 1990.
40. B. Berge, “Electrocapillarity and wetting of insulator films by water,” Comptes Rendus de l’Academie des Sciences Serie II, vol. 317, pp. 157–163, 1993.
41. M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer, vol.37, no. 12, pp. 2465–2470, 1996.
42. M. G. Pollack, R. B. Fair, A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Applied Physics Letters, vol. 77, no.11, pp. 1725-1726, September 2000.
43. S.-K. Fan, C. Hashi, and C.-J. Kim, “Manipulation of multiple droplets on NxM grid by cross-reference EWOD driving scheme and pressure-contact packaging,” IEEE Conf. Micro Electro Mechanical Systems, pp. 694-697., Kyoto, Japan, January 2003.
44. S.-K Cho, H. Moon, and C.-J. Kim, ”Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” Journal of Microelectromechanical Systems, vol. 12, no.1, pp. 70-80, February 2003.
45. Vijay Srinivasan, Vamsee K.Pamula, and Richard B. Fair, "An Integrated Digital Microfluidic Lab-on-a-chip for Clinical Diagnostics on Human Physiological Fluids," Lab on a Chip, vol. 4, pp. 310-315, 2004.
46. V. Srinivasan, V.K. Pamula, P. Paik, and R.B. Fair, ”Protein Stamping for MALDI Mass Spectrometry Using an Electrowetting-based Microfluidic Platform,” Lab-on-a-Chip: Platforms, Devices and Applications, Conf. 5591, SPIE Optics East, pp 25-28, Philadelphia, Oct. 2004.
47. Vijay Srinivasan, Vamsee K.Pamula, and Richard B. Fair, ” Droplet-based Microfluidic Lab-on-a-chip for Glucose Detection,” Analytica Chimica Acta, vol. 507, no.1, pp. 145-150, 2004.
48. S. Kuipera and B. H. W. Hendriks, ”Variable-focus liquid lens for miniature cameras,” Applied physics letter, vol. 85, no. 7, pp. 1128-1130, 2004.
49. Y. Fouillet, H. Jeanson, D. Jary, O. Constantin, and C. Vauchier, “Moving droplets with microcatenaries,” Micro Total Analysis Systems 2003, Squaw Valley, California, USA, Oct. 2003, pp. 61-64.
50. U.-C. Yi and C.-J. Kim, “EWOD Actuation with Electrode-Free Cover Plate,” 13th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers’05), Seoul, Korea, June 2005, pp. 89-92.
51. T.-T. Wang, P.-W. Huang, and S.-K. Fan, “Droplets Oscillation and Continuous Pumping by Asymmetric Electrowetting,” IEEE Conf. Micro Electro Mechanical Systems (MEMS’06), Istanbul, Turkey, Jan. 2006, pp. 174-177.
52. H. A. Pohl, “The Motion and Precipitation of Suspensoids in Divergent Electric Fields,” Journal of Applied Physics, vol. 22, pp. 869, 1951
53. H. A. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, UK, 1987
54. X.-B.Wang , Y. Huang, X. Wang, F. F. Becker, P. R. C. Gascoyne, “Dielectrophoretic manipulation of cells with spiral electrodes,“ Journal of Biophysics, vol. 72, pp. 1887–1899, April 1997.
55. B. H. L. Encinas, , B. A. Simmons, E. B. Cummings, Y. Fintschenko, “Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators,” Analytical Chemistry, vol. 76, no. 6, pp. 1571-1579, March 2004.
56. C.-F. Chou, F. Zenhausern, “Electrodeless dielectrophoresis for micro total analysis systems,“ IEEE Engineering in Medicine and Biology Magazine, pp. 62-67, November/December 2003
57. C.-F. Chou, J. O. Tegenfeldt, O. Bakajin, S. S. Chan, E. C. Cox, N. Darnton, T. Duke, and R. H. Austin, “Electrodeless dielectrophoresis of single- and double-stranded DNA”, Biophysical Journal, vol. 83, pp. 2170-2179, October 2002.
58. N. G. Stoicheva, S. W. Hui, ”Dielectrophoresis of cell-size liposomes,” Biochim Biophys Acta, vol. 1195, pp. 39-44, October 1994.
59. K. D. Hermanson, S. O. Lumsdon, J. P. Williams, E. W. Kaler, O. D. Velev, “Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions”, Science, vol. 294, pp. 1082-1086, November 2001
60. H. Morgan, and N.G. Green, “Dielectrophoretic manipulation of rod shaped viral particles,” Journal of Electrostatics, vol. 42, pp. 279-293, 1997.
61. M. Washizu, S. Suzuki, O. Kurosawa, T. Nishizaka, and T. Shinohara, “Molecular dielectrophoresis of biopolymers,” IEEE Transactions on Industry Applications, vol. 30, pp. 835-843, 1994.
62. M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems,” Electrophoresis, vol. 23, pp. 2569–2582, 2002.
63. Y. Huang, K.L. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M.J. Heller, J.P. O´Connell, M. Krihak, “Electric manipulation of bioparticles and macromolecules on microfabricated electrodes,” Analytical Chemistry, vol. 73, pp. 1549-59, April 2001.
64. D. S. Gray, J. L. Tan, J. Voldman, C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosensors and Bioelectronics, vol. 19, pp. 771–780, 2004
65. P. R. C. Gascoyne, J. V. Vykoukal, “Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments,” Proceedings of the IEEE, vol. 92, no. 1, pp.22-42, January 2004.
66. O. D.Velev,B. G. Prevo,K. H. Bhatt, “On-chip manipulation of free droplets,” Nature, vol. 426, pp. 415-516, DECEMBER 2003.
67. J. A. Schwartz, J. V. Vykoukal, P. R. C. Gascoyne, “Droplet-based chemistry on a programmable micro-chip,” Lab-on-a-Chip, vol. 4, pp. 11–17, 2004.
68. J. Vykoukal, J. Schwartz, F. Becker, and P. Gascoyne, “A programmable dielectrophoretic fluid processor for droplet based chemistry,” Micro Total Analysis Systems, Kluwer Academic Publishers, 2001.
69. P. J. Burke, “Nano-dielectrophoresis: Electronic Nanotweezers,” in Encyclopedia of Nanoscience and Nanotechnology, vol. 6, pp. 623-641, H.S. Nalwa, Ed., American Scientific Publishers, 2004.
70. N. G. Stoicheva, S. W. Hui, ”Dielectrophoresis of cell-size liposomes,” Biochim Biophys Acta, vol. 1195, pp. 39-44, October 1994.
71. K. D. Hermanson, S. O. Lumsdon, J. P. Williams, E. W. Kaler, O. D. Velev, “Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions”, Science, vol. 294, pp. 1082-1086, November 2001
72. H. Morgan, and N.G. Green, “Dielectrophoretic manipulation of rod shaped viral particles,” Journal of Electrostatics, vol. 42, pp. 279-293, 1997.
73. M. Washizu, S. Suzuki, O. Kurosawa, T. Nishizaka, and T. Shinohara, “Molecular dielectrophoresis of biopolymers,” IEEE Transactions on Industry Applications, vol. 30, pp. 835-843, 1994.
74. Y.-H, S.-H. Joo, M. Duhon, M. Heller, B. Wallace, X. Xu, “Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays,” Analytical Chemistry, vol. 74, pp. 3362-3371, 2002
75. Y. Huang, K.L. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M.J. Heller, J.P. O´Connell, M. Krihak, “Electric manipulation of bioparticles and macromolecules on microfabricated electrodes,” Analytical Chemistry, vol. 73, pp. 1549-59, April 2001.
76. D. S. Gray, J. L. Tan, J. Voldman, C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosensors and Bioelectronics, vol. 19, pp. 771–780, 2004
77. S. Prasad, X. Zhang, M. Yang, C. S. Ozkan, M. Ozkan, “Neurons as sensors: individual and cascaded chemical sensing,” Biosensors and Bioelectronics, vol. 19, pp. 1599–1610, 2004
78. M. Yang, X. Zhang, Y. Zhang, and C. S. Ozkan, “Stochastic frequency signature for chemical sensing using noninvasive neuronelectronic interface,” IEEE Transactions on Biomedical Engineering, vol. 52, pp. 916-922, 2005.
79. M. Jenkner, M. Tartagni, A. Hierlemann, and R. Thewes, “Cell-based CMOS sensor and actuator arrays,” IEEE Journal of solid-state circuits, vol. 39, pp. 2431-2437, 2004
80. K. Ratanachoo, P. R. C. Gascoyne, M. Ruchirawat, “Detection of cellular responses to toxicants by dielectrophoresis,” Biochimica et Biophysica Acta, vol. 1564, pp. 449-458, 2002.
81. J. Suehiro, M. Shutou, T. Hatano, M. Hara, “High sensitive detection of biological cells using dielectrophoretic impedance measurement method combined with electropermeabilization,” Sensors and Actuators B, vol. 96, pp. 144–151, 2003
82. S. Archer, T. T. Li, A. T. Evans, S. T. Britland, H, Morgan, “Cell reactions to dielectrophoretic manipulation,” Biochem. Biophys. Res. Commun., vol. 257, pp. 687-698, 1999.
83. The Plasma Proteins: Structure, Function and Genetic Control, 2nd ed., Frank W. Putnam, ed.,Vol. 1, p. 141, 147, Academic Press, New York (1975).
84. L. Zheng, J. P. Brody, P. J. Burke, “Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly,” Biosensors and Bioelectronics, vol. 6, pp. 623~641, 2004.
85. Adriani, P.M. and Gast, A.P. “Electric-field-induced aggregation in dilute colloidal suspensions. ” Faraday Discuss.Chem.Soc. 90:17-29 (disc. 57-62), 1990
86. Anderson, R.A. “Electrostatic forces in an ideal spherical-particle electrorheological fluid.” Langmuir vol 10, pp. 2917-2928, 1994.
87. K. Lu, W. Wen, C. Li , and S. Xie, Phys Rev Lett., 52,6 (1995), pp. 6329-6332
88. H. Block and J. P. Kelly, J. Phys. D 21, 1661~1988.
89. A. P. Gast and C. F. Zukoski, Adv. Colloid Interface Sci. 30,153 ~1989.
90. for example, see, U.S. Department of Energy Document No. DE-RP02-91ER30172;R. Tao, Materially Speaking 6,3 (1989);The Economist 305, 94 (1987);Research and Development, 30, 3 (1988)
91. Dill K. A., “ Dominant Forces in Protein Folding” , Biochemistry , 29, pp. 7133-7155, 1990.
92. Takano K., Y. Yamagata, J. Funahashi, Y. Hioki, S. Kuramitsu, K. Yutani, “ Contribution of Intra- and Intermolecular Hydrogen Bonds to the Conformational Stability of Human Lysozyme ”, Biochemistry, 38, pp. 12698-12708, 1999.
93. Ketul C. Popat, Tejal A. Desai, “ Poly(ethylene glycol) interfaces: an approach for enhanced performance of microfluidic systems ” , Biosensors and Bioelectronics 19, pp.1037–1044, 2004.
94. Hofstee B. H. J., “ Hydrophobic Affinity Chromatography Proteins ”, Analytical Biochemistry, 52 ,pp.430-448, 1973.
95. Van O. C. J., R.J. Good, M.K. Chaudhury, “Hydrophobic Chromatography”, Journal of Chromatography, 376, pp.111, 1986.
96. Shaltiel S., “ Hydrophobic Chromatography ” , Methods Enzymology, 104, 69~96, 1984
97. Perkins T.W., D. S. Mak, T. W. Root, E. N. Lightfoot, “Protein Retention in Hydrophobic Interaction Chromatography: Modeling Variation with Buffer Ionic Strength and Column Hydrophobicity”, Journal of Chromatography A, 766, pp. 1-14, 1997.
98. Horbett T. A., J. L. Brash, “ Proteins at Interfaces : Current Issues and Future Prospects ”, 1987 American Chemical Society, pp. 1-33.
99. Tan J. S., P. A. Martic, “Portein Adsorption and Conformational Change on Small Polymer Particles”, Journal Colloid and Interface Science, 36, pp.415-431, 1990.
100. Privalov P. L., S. J. Gill , “ Stability of Protein Structure and Hydrophobic Interaction ” , Advances in Protein Chemistry, 39, pp. 191-234, 1998.
101. Norde W., C. A. Haynes , “ Reversibility and the Mechanism of Protein Adsorption ”, 1995 American Chemical Society, 26-40
102. Murphy K. P., E. Freire , “ Thermodynamics of Structural Stability and Cooperative Folding Behavior in Proteins ” , Journal of Molecular Biological, 313-361(1992) Academic Press Inc.
103. Koutsoukos P. G., W. Norde , J. Lyklema , “ Protein Adsorption on Hematite (��-Fe2O3) Surfaces ” , Journal of Colloid and Interface Science, 95, 385-397, 1983
104. Esquibel K. M. A., A. C. D. Cabral, J. A. Queiroz, N. G. Pinto, “Study of Hydrophobic Interaction Adsorption of Bovine Serum Albumin under Overloaded Conditions Using Flow Microcalorimetry”, Journal of Chromatography A, 865, pp. 111-122, 1999.
105. Takaaki A., W. Norde, “ The Behavior of Some Model Proteins at Solid - Liquid Interfaces. 1.Adsorption from Single Protein Solutions ”, Colloids and Surfaces, 51 (1990) 1-15
106. Norde W., “Biocolloids and Biosurfaces : Energy and Entropy of Protein Adsorption ” , Journal of Dispersion Science and Technology, 13 (1992) 363-377
107. B. Kasemo, ”Biological surface science.” Surface Science, 500, pp.656-677, 2002
108. P. Kingshott, H. J. Griesser, “Surface that resist bioadhesion,“ Current
Opinion in Solid State and Materials Science, vol. 4, pp. 403-412, 1999
109. E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M.
Whitesides, “A survey of structure-property relationships of surfaces that resist the adsorption of protein,” Langmuir, vol. 17, pp. 5605-5620, 2001
110. J.-Y. Yoon and R. L. Garrell, “Preventing biomolecular adsorption in electrowetting-based biofluidic chips,” Analytical Chemistry, vol. 75, pp. 5097-5102, 2003
111. M. G. Pollack, A. D. Shenderov, R. B. Fair, “Electrowetting-based actuation of droplets for integrated microfluidics,” Lab-on-a-chip, vol. 2, pp. 96-101, 2002
112. V. Srinivasan, V. K. Pamula, R. B. Fair, “Droplet-based microfluidic lab-on-a-chip for glucose detection,” Analytica Chimica Acta, vol. 507, pp. 145–150, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 簡佳珍、林天祐 (2002)。桃園縣國`民小學教師組織承諾與教師效能感關係之研究。教育研究資訊,10(5),137-162。
2. 賴明政 (2004)。企業倫理行為、組織承諾、工作滿足與組織公民行為關係之研究。企業管理學報,60,31-59。
3. 鄭清揚 (2005)。組織公平與職場偏差行為關係之研究。文大商管學報,10(1),75-99。
4. 鄭仁偉、黎士群 (2001)。組織公平、信任與知識分享行為之關係性研究。人力資源管理學報,1(2),69-93。
5. 蔡進雄 (2005a)。超越轉型領導:國民中小學校長新轉型領導影響教師組織承諾之研究。國民教育研究集刊, 13,37-63。
6. 廖年淼、何信助、賴銘娟 (2004)。高級職業學校組織文化與教師組織承諾關係之研究。中正教育研究,3(2)69-96。
7. 董時叡 (2001)。工作壓力過程模式之驗證:台灣基層農業推廣人員之分析。應用心理研究,10,199-220。
8. 葉子超 (2005)。國民中小學校長行政領導、工作壓力與積極調適之道。學校行政,36,1-16。
9. 黃瑋苓 (2005)。國民小學融合教育班教師工作壓力與其因應策略之研究。身心障礙研究。3(3),201-215。
10. 黃國隆、陳惠芳 (1998)。資訊技術、組織價值觀與組織承諾之關係。管理學報,15(3),343-366。
11. 黃正雄 (2006)。購併後變革活動、組織正義與員工態度。人力資源管理學報,6(3),001-021。
12. 湯柏齡、陳永煌、諶立中 (2002)。工作壓力。中華職業醫學雜誌,9(2),145-147。
13. 彭玉樹、林家五、郭玉芳 (2004)。購併公司命名決策、組織公平和組織認同之研究 — 主、被併公司員工之觀點。人力資源管理學報,4(1),49-70。
14. 陳惠芳、洪嘉徽 (2006)。員工知覺薪酬公平與賦權對組織承諾影響之研究。東吳經濟商學學報,52,235-262。
15. 陳素惠 (2005)。教師工作壓力探討。諮商與輔導, 229,28-34。