跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林彥呈
研究生(外文):Yen-Chen Lin
論文名稱:以介電濕潤及液體介電泳實現數位及類比整合微流體晶片
論文名稱(外文):Integrated Digital and Analog Microfluidics by EWOD and LDEP
指導教授:范士岡
指導教授(外文):Shih-Kang Fan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:奈米科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:61
中文關鍵詞:電動力操控實驗室晶片介電濕潤液體介電泳
外文關鍵詞:Electrokinetic-manipulationLab-on-a-ChipElectrowetting-on-dielectricLiquid-dielectrophoresis
相關次數:
  • 被引用被引用:8
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
電動力是一跨尺度的操作力量,本研究將之應用於實驗室晶片,成功地將以兩種不同的液體驅動力製作在同一晶片上。介電濕潤是一種數位流體系統。另外液體介電泳則是一種驅動流體的方式,我們可視它為一種連續流體系統。其主要優點包含不需流道設計與製程簡單等等。

本研究以結合數位流體和連續流體在同一微流體晶片上,分別藉由介電濕潤以及液體介電泳。並且利用兩種技術的結合,達成奈/微液滴產生系統。除此之外也提供了液體介電泳和毛細管電泳之結合規劃,希望能夠實現在虛擬流道完成DNA之分離。
Electrokinetic force is a cross-scale manipulation mechanism. In this research, we applied the electrokinetic force in Lab-on-a-Chip and succeed to combibe two kinds of liquid actuation. Electrowetting-on-dielectric(EWOD) is a digital microfluidic system. On the other hand, Liquid-dielectrophoresis(LDEP) is also a method for driving fluids,
and we could see it as an analog microfluidic system. Advantages of these techniques including non-designing-channel and easily-process.

In this research, we combined digital microfluids and analog microfluids on a single chip by using EWOD and LDE. By using these techniques, we succeed to obtain a nano/micro-droplet-creating-system. Otherwise, we also hope to separate DNA in a virtual-channel by combing LDEP and capillary electrophorseis(CE).
目錄
中文摘要…………………………………………………..………..i
Abstract……………………………………………………………..ii
致謝…………………………………..……………………….........iii
目錄………………………..…………………………......................v
圖目錄…………………………………………………………….viii
表目錄………………………………………………………………xi

第一章 緒論…………………………………………………………1
1.1 研究動機…………………………………………………….1
1.2 數位與類比微流體之應用………………………………….2
1.3 本論文之組織架構………………………………………….3
第二章 實驗架構設計………………………………………………5
2.1 整體實驗架構……………………………………………….5
2.2 實驗系統架設……………………………………………….6
第三章 電濕潤數位流體系統………………………………………8
3.1 文獻回顧…………………………………………………….8
3.2 介電濕潤晶片之設計與製作過程…………………………13
3.3 介電濕潤實驗現象及發 現………………………………...15
3.3.1 供應電源之頻率改變…………………………………16
3.3.2 晶片環境之改變………………………………………19
第四章 類比流體之液體介電泳理論及現象……………………..21
4.1 文獻回顧…………………………………………………...21
4.2 介電泳之種類介紹………………………………………...21
4.3 液體介電泳之詳細理論…………………………………...24
4.4 液體介電泳之綜合比較…………………………………...26
4.5 液體介電泳之實驗測試…………………………………...28
4.5.1 長距離之液體介電泳測試……………………………28
4.5.2 連續流體轉換為數位流體……………………………29
4.5.3 特殊電極設計之液體介電泳…………………………31
第五章 數位微液滴產生系統……………………………………..33
5.1 文獻回顧…………………………………………………...33
5.2 介電濕潤及液體介電泳回顧……………………………...33
5.3 晶片設計及製作……………………………………………34
5.3.1光罩設計……………………….……………………….34
5.3.2晶片製作………………………………………………..36
5.4 實驗內容……………………………………………………36
5.4.1一般型液滴產生系統…………………………………..37
5.4.2 加強型之液滴產生系統之電極設計………………….41
5.5 液滴大小之分析……………………………………………43
5.6 在空氣中之液體介電泳測試………………………………47
5.6.1 實驗架構………………………………………………...47
5.6.2 實驗內容與結果………………………………………...48
第六章 結論與未來展望…………………………………………...52
6.1 結論…………………………………………………………52
6.2 未來展望……………………………………………………52
6.3毛細管電泳和液體介電泳之整合規劃………….…………53
參考文獻…………………………………………………………….56
圖目錄

圖2.1 實驗設計流程圖…………………………………………...5
圖2.2 整體實驗架設……………………………………………...7
圖3.1 EWOD側視圖(a) EWOD表面示意圖 (b) 施加電壓角度改變示意圖………………………………………………...8
圖3.2 氣液固三相之表面張力與接觸角之示意圖………….......9
圖3.3 EOWD介電層電荷累積情形………………..……..….…10
圖3.4 Washizu團隊利用開放式陣列式平面電極設計之微液珠傳輸系統示意圖……………………..…………..……….11
圖3.5 EWOD液滴傳送示意圖……………..………..……….…12
圖3.6 電濕潤晶片光罩設計圖…………………………..……...13
圖3.7 電濕潤晶片組裝結構之示意圖;(a)一維電濕潤組裝立體圖(b)電濕潤晶片側面結構示意圖…………………..…..16
圖3.8 EWOD結構之剖面圖…………..………………………..17
圖3.9 EWOD液滴傳送圖(a)~(d)EWOD之液滴傳送 (e)當加大電壓時產生衛星液滴………..……….…………………..17
圖3.10 不同頻率下始噴射衛星液滴的操作電壓趨勢圖….……18
圖3.11 施加70 Vrms、100 kHz電訊號並以較高電壓驅動液滴, 液滴可快速移動,如(b)-(c)所示,(d)持續施加高電壓時則開始噴出衛星液滴(satellite droplets)……………….…...19
圖3.12 EWOD晶片在油中之不同趨動頻率比較之示意圖(a)液柱拉出之示意圖。(b)電源供應器頻率為1 kHz 。(c)電源供應器頻率為100 kHz……………………………………...20
圖4.1 介電泳基本原理…….…………………...……………….22
圖4.2 液體介電泳(LDEP)之現象,高介電常數之液體傾向往電場較強處移動………..………………………..………….24
圖4.3 Jones之LDEP剖面圖…………………………….............25
圖4.4 LDEP液體流動之情形……………………..…………….25
圖4.5 利用LDEP現象製做微小液珠………………..…………26
圖4.6 NCTU之光罩設計圖樣……………..…………………....29
圖4.7 LDEP對電極圖樣為NCTU之驅動情形 (a)~(f)為NCTU在油黏滯度為92 cSt之下之實驗情況。(g)改變油黏滯度為0.65 cSt….……………………………………………..29
圖4.8 光罩之設計…………………..…………………………...30
圖4.9 連續微流體轉換為數位微流體………………………….30
圖4.10 凹口狀電極之設計圖…………………………………….31
圖4.11 LDEP液體流動之情況(a) 70 Vrms,100 kHz (b) 85 Vrms,100kHz……………………………………………………32
圖5.1 定量晶片之設計圖(100 nL)…………………………...…35
圖5.2 定量晶片之設計圖(6 nL)………………………..…….…35
圖5.3 100 nL的液滴切割過程……………………………….....38
圖5.4 100 nL的液滴切割過程(含方格紙)…………………….39
圖5.5 6 nL液滴切割之過程圖………………………………….40
圖5.6 轉角處電極之液體回收力分析…………………...….....41
圖5.7 弓字型切割液滴電極設計……………………..………...42
圖5.8 利用弓字型電極切割6 nL之液滴過程圖………….…...43
圖5.9 利用Image Pro分析微液滴大小過程……………………45
圖5.10 利用Image Pro分析微液滴大小過程……………………45
圖5.11 由上而下電極之線寬分別為500、400、300、200、100、50�慆……………………………………………….……..47
圖5.12 上下板間距為100 �慆時,空氣中最小的液體驅動電極線寬為300 �慆………………………………….……….48
圖5.13 上下板間距為50 �慆時,空氣中最小的液體驅動電極線寬為200 �慆…………………………………….………..49
圖5.14 上下板間距為25 �慆時,空氣中最小的液體驅動電極線寬為100 �慆………………………………………………49
圖6.1 LDEP和CE之合併光罩圖………………………………53
圖6.2 第二道光罩圖樣………………………………………….54
圖6.3 Gen-KB DNA ladder之分離分配圖…………………..…55
表目錄

表5.1 經比例分析後微液滴體積一覽表及標準差………….....46
表5.2 LDEP效應驅動液體之參數相對表……………………...51
參考文獻

1. S. K. Cho, H. Moon, J. Fowler, S.-K. Fan, and C.-J. Kim, “Splitting a Liquid Droplet for Electrowetting-Based Microfluidics”, Int. Mechanical Engineering Congress and Exposition, New York, NY, Nov. 2001, IMECE2001/MEMS-23831.
2. T. Young, Trans. Roy. Soc. (London), vol. 95, pp. 65, 1805
3. M. Washizu, “Electrostatic actuation of liquid droplets for microreactor applications,” IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 732-737, July/August 1998.
4. H. Moon, S.-K. Cho, R. L. Garrell, C.-J. Kim, “Low voltage electrowetting-on-dielectric,” Journal of Applied Physics, vol. 92, no. 7, pp. 4080-4087, October 2002.
5. S.-K. Cho, S-K. Fan, H. Hoon, and C.-J Kim, “Toward Digital Microfluidic Circuits: Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation”. IEEE Conf. MEMES, Las Vegas, NV, Jan. 202, pp. 32-52.
6. S.-K. Cho, H. Moon, and C.-J. Kim, “Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits”, Journal of Microelectromechanical System, VOL. 12, NO. 1, Feb. 2003, pp. 70-80.
7. B. Berge, J. Peseux, “Variable focus lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E, vol. 3, pp. 159–163, 2000.
8. B. R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C. C. Huang, J. A. Rogers, “Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics,” Applied Physics Letters, vol. 83, no. 24, pp. 4912-4914, December 2003.
9. R. A. Hayes, B. J. Feenstra, “Video-speed electronic paper based on electrowetting”, Nature, vol. 425, pp. 383-385, September 2003.
10. M. G. Pollack, A. D. Shenderov, R. B. Fair, “Electrowetting-based actuation of droplets for integrated microfluidics,” Lab-on-a-chip, vol. 2, pp. 96-101, 2002
11. M. G. Pollack, R. B. Fair, A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Applied Physics Letters, vol. 77, no.11, pp. 1725-1726, September 2000.
12. S.-K. Fan, C. Hashi, and C.-J. Kim, “Manipulation of multiple droplets on NxM grid by cross-reference EWOD driving scheme and pressure-contact packaging,” IEEE Conf. Micro Electro Mechanical Systems, pp. 694-697., Kyoto, Japan, January 2003.
13. M. Washizu, “Electrostatic actuation of liquid droplets for microreactor applications,” IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 732-737, July/August 1998.
14. J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.-J. Kim, “Electrowetting and electrowetting-on-dielectric for microscale liquid handling,” Sens. Actuators, Phys. A, vol. 95, pp. 259–268, 2002.
15. H. Moon, S.-K. Cho, R. L. Garrell, C.-J. Kim, “Low voltage electrowetting-on-dielectric,” Journal of Applied Physics, vol. 92, no. 7, pp. 4080-4087, October 2002.
16. V. Srinivasan, V. K. Pamula, R. B. Fair, “Droplet-based microfluidic lab-on-a-chip for glucose detection,” Analytica Chimica Acta, vol. 507, pp. 145–150, 2004.
17. U.-C. Yi., C.-J Kim, “Soft printing of droplets pre-metered by electrowetting,” Sensors and Actuators A, vol. 114, pp. 347–354, 2004
18. S.-K. Cho and C.-J. Kim, “Particle separation and concentration control for digital microfluidic systems,” IEEE Conf. MEMS, pp. 686-689, Kyoto, Japan, January 2003.
19. A. R. Wheeler, H. Moon, C.-J. Kim, J. A. Loo, and R. L. Garrell, “Electrowetting-based microfluidics for analysis of peptides and proteins by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry,” Analytical Chemistry, vol. 76, pp. 4833-4838, 2004.
20. M. Vallet, M. Vallade, and B. Berge. “Limiting phenomena for the spreading of water on polymer films by electrowetting,” The European Physical Journal B, vol. 11, pp. 583-591, 1999.
21. F. Mugele, S. Herminghaus, “Electrostatic stability of fluidic microstructures,” Applied Physics Letters, vol. 81, pp. 2303-2305, 2002.
22. 王祖德, “電動力操控應用於微液滴細胞晶片之研究”,國立交通大學奈米科技研究所碩士論文,民國94年.
23. H. A. Pohl, “The Motion and Precipitation of Suspensoids in Divergent Electric Fields,” Journal of Applied Physics, vol. 22, pp. 869, 1951
24. H. A. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, UK, 1987.
25. X.-B.Wang , Y. Huang, X. Wang, F. F. Becker, P. R. C. Gascoyne, “Dielectrophoretic manipulation of cells with spiral electrodes,“ Journal of Biophysics, vol. 72, pp. 1887–1899, April 1997.
26. A. D. Goater, J. P. H. Burt, R. Pethig, “A combined travelling wave dielectrophoresis and electrorotation device: applied to the concentration and viability determination of Cryptosporidium,” Journal of Physics D: Applied Physics, vol. 30, no. 18, pp. L65–L69, September 1997.
27. B. H. L. Encinas, , B. A. Simmons, E. B. Cummings, Y. Fintschenko, “Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators,” Analytical Chemistry, vol. 76, no. 6, pp. 1571-1579, March 2004.
28. C.-F. Chou, F. Zenhausern, “Electrodeless dielectrophoresis for micro total analysis systems,“ IEEE Engineering in Medicine and Biology Magazine, pp. 62-67, November/December 2003
29. C.-F. Chou, J. O. Tegenfeldt, O. Bakajin, S. S. Chan, E. C. Cox, N. Darnton, T. Duke, and R. H. Austin, “Electrodeless dielectrophoresis of single- and double-stranded DNA”, Biophysical Journal, vol. 83, pp. 2170-2179, October 2002.
30. N. G. Stoicheva, S. W. Hui, ”Dielectrophoresis of cell-size liposomes,” Biochim Biophys Acta, vol. 1195, pp. 39-44, October 1994.
31. K. D. Hermanson, S. O. Lumsdon, J. P. Williams, E. W. Kaler, O. D. Velev, “Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions”, Science, vol. 294, pp. 1082-1086, November 2001.
32. H. Morgan, and N.G. Green, “Dielectrophoretic manipulation of rod shaped viral particles,” Journal of Electrostatics, vol. 42, pp. 279-293, 1997.
33. M. Washizu, S. Suzuki, O. Kurosawa, T. Nishizaka, and T. Shinohara, “Molecular dielectrophoresis of biopolymers,” IEEE Transactions on Industry Applications, vol. 30, pp. 835-843, 1994.
34. M. P. Hughes, “Strategies for dielectrophoretic separation in laboratory-on-a-chip systems,” Electrophoresis, vol. 23, pp. 2569–2582, 2002.
35. Y. Huang, X.-B. Wang, F.F. Becker, and P.R.C. Gascoyne, “Introducing dielectrophoresis as a new force field for field-flow fractionation,” Biophysical Journal, vol. 73, pp. 1118-1129, 1997.
36. G. H. Markx, R. Pethig, and J. Rousselet, “The dielectrophoretic levitation of latex beads, with reference to field-flow fractionation,” Journal of Physics D: Applied Physics, vol. 30, pp. 2470-2477, 1997.
37. H. Morgan, N.G. Green, M.P. Hughes, W. Monaghan, and T.C. Tan, “Large-area travelling-wave dielectrophoresis particle separator,” Journal of Micromechanics and Microengineering, vol. 7, pp. 65-70, 1997.
38. M. P Hughesy, R. Pethig and X.-B Wang, “Dielectrophoretic forces on particles in travelling electric fields,” Journal of Physics D: Applied Physics, vol. 29, pp. 474-482, 1996.
39. Y. Huang, K.L. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M.J. Heller, J.P. O´Connell, M. Krihak, “Electric manipulation of bioparticles and macromolecules on microfabricated electrodes,” Analytical Chemistry, vol. 73, pp. 1549-59, April 2001.
40. D. S. Gray, J. L. Tan, J. Voldman, C. S. Chen, “Dielectrophoretic registration of living cells to a microelectrode array,” Biosensors and Bioelectronics, vol. 19, pp. 771–780, 2004
41. T. B. Jones, “Liquid dielectrophoresis on the microscale,” Journal of Electrostatics, vol. 51-52, pp. 290-299, 2001.
42. T. B. Jones, J. D. Fowler, Y.-S. Chang, C.-J. Kim, “Frequency-Based Relationship of Electrowetting and Dielectrophoretic Liquid Microactuation,” Langmuir, vol. 19, pp. 7646-7651, 2003
43. T. B. Jones, K.-L. Wang, D.-J. Yao, “Frequency-dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis.”, Langmuir, vol. 20, pp. 2813-2818, 2004.
44. K.-L. Wang, T. B. Jones, “Frequency-dependent bifurcation in electromechanical microfluidic structures,” Journal of Micromechanics and Microengineering, vol. 14, pp. 761-768, 2004.
45. T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, “Dielectrophoretic liquid actuation and nanodroplet formation,” Journal of Applied Physics, vol. 89, pp. 1441-1448, January 2001.
46. H. A. Pohl, Dielectrophoresis, Cambridge University Press, Cambridge, UK, 1987.
47. G. Fuhr, S. Fiedler, T. Müller, T. Schnelle, H. Glasser,T. Lis, B. Wagner, “Particle micromanipulator consisting of two orthogonal channels with travelling-wave electrode structures,“ Senser and Actuators A, vol. 41, pp. 230–239, April 1994.
48. X.-B.Wang , Y. Huang, X. Wang, F. F. Becker, P. R. C. Gascoyne, “Dielectrophoretic manipulation of cells with spiral electrodes,“ Journal of Biophysics, vol. 72, pp. 1887–1899, April 1997.
49. A. D. Goater, J. P. H. Burt, R. Pethig, “A combined travelling wave dielectrophoresis and electrorotation device: applied to the concentration and viability determination of Cryptosporidium,” Journal of Physics D: Applied Physics, vol. 30, no. 18, pp. L65–L69, September 1997.
50. Y. C. Lin, K. C. Chuang, T. T. Wang, C. P. Chiu, and S.-K. Fan,” Integrated Digital and Analog Microfluidics by EWOD and LDEP”, Jan NEMS2006 Conference, China.
51. G. B. Lee, C. H. Lin, G. L. Chang, "Micro Flow Cytometers With Buried Su-8/Sog Optical Waveguides," Volume 103, Issues 1-2, 15 January 2003, Pages 165-170, Sensors and Actuators A: Physical, 2002.
52. F. Fort, L. Krivankova, P. Bocek, Capillary Zone Electrophoresus; VCH Verlagsgesellschaft mbH, Weinheim, 1993.
53. E. Grushka, R. M. Mccormick, J. J. Kirkland, ”Effect of temperature gradients on the efficiency of capillary zone electrophoresis separations”, Anal. Chem., 1989, Vol61, pp.241-246.
54. 廖興盛,,“高分子材料微流管道應用於製作微電泳分析晶片之研究”,國立成功大學工程科學系碩士論文, 民國88 年, pp.16-19.
55. A. Wixforth, “Acoustically driven planar microfluidics,” Superlattices and Microstructures, vol. 33, pp. 289-296, 2003.
56. M. Northrup, M.-T Ching, R. M. White, R. T. Watson, “DNA amplification with a microfabricated reaction chamber,“ IEEE International Conference on Solid State Sensors and Actuators, TRANSDUCERS, pp. 924-926, Yokohama, 1993.
57. 科學發展2003年11月,371期
58. F.-G. Tseng, “a micro droplet injector system”, PhD thesis of UCLA, 1998.
59. J. D. Lee, J. B. Yoon, J. K. Kim, H. J. Chung, C. S. Lee, H. D. Lee, H.J. Lee, C. K. Kim, and C. H. Han, “A Thermal Inkjet Printhead with a Monolithically Fabricated Nozzle Plate and Self-Aligned Ink Feed Hole”, J. MicroelectroMechanical Systems, vol. 8, No. 3, pp. 229-236, Sep., 1999.
60. J. Chen, K. D. Wise, “A High Resolution Silicon Monolithic Nozzle Array for Inkjet Printing”, IEEE Tranducers’95, June 25-29, pp.321-324, 1995.
61. X. Zhu, E. Tran, W. Wang, E. S. Kim, S. Y. Lee, “Micromachined Acoustic-Wave Liquid Ejector”, Solid-state Sensor and Actuator workshop Hilton head, South Carolina, pp. 280-282, 1996.
62. X. Zhu, E. S. Kim, “Microfluidic motion generation with acoustic waves”, Sensors and Actuators A, vol. 66, pp. 355-360, 1998.
63. S. Hirata, Y. Ishii, H. Matoba, T. Inui, “An Ink-Jet Head Using Diaphragm Microactuator”, Proc. Of the 9th IEEE Micro Electro Mechanical Systems Workshop, San Diego, California, USA, pp.418-423, 1996.
64. S. K. Hsiung, C. T. Chen, and G.-B. Lee, “A Microfluidic Chip Utilizing Controllable Moving Walls for the Formation of Micro-droplets in Liquids,” IEEE-NEMS, January 18-21, 2006.
65. C.-T. Chen and G.-B. Lee, “A New Microfluidic Chip for Formation of Micro-droplets in Liquids Utilizing Active Pneumatic Choppers,” IEEE MEMS 2006.
66. T. Nisisako, T. Torii, T. Higuchi, “Droplet Formation in a Microchannel Network”, Lab on a Chip, 2, pp.24-26, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top