跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 10:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建焜
研究生(外文):Chien-Kun Chen
論文名稱:N型低溫複晶矽薄膜電晶體在閘極交流電壓下的劣化研究
論文名稱(外文):Study of N-type LTPS TFTs Degradation Under Gate Pulse Stress
指導教授:戴亞翔
指導教授(外文):Ya-Hsiang Tai
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:57
中文關鍵詞:低溫多晶矽薄膜電晶體交流訊號劣化閘極脈波劣化
外文關鍵詞:LTPS TFTAC stressGate pulse stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
複晶矽薄膜電晶體(poly-Si TFT)最近幾年在液晶顯示器(AMLCD)及有機發光二極體(AMOLED)顯示器應用中之所以會是眾所注目的焦點,是因為其優異的元件特性。相較非晶矽薄膜電晶體,複晶矽薄膜電晶體有較高電流趨動能力及較好的可靠度,因此在複晶矽薄膜電晶體顯示器裡,它可以被用來整合畫素電路及周邊驅動電路於同一片玻璃基板上,如此使面板結構簡單化且可以減少週邊半導體零組件的使用數量以及後段模組在組裝時的接點數目,進而提高工程可靠度,除此之外更可降低驅動IC成本,維持低耗電特性,提供高精細的畫質表現。所以,複晶矽薄膜電晶體被視為實現系統化面板(System on Panel)的關鍵技術。
然而不同於畫素的薄膜電晶體,在驅動電路上的薄膜電晶體會受到高頻的閘極脈波電壓所驅動。因此,薄膜晶體在交流訊號操作下的劣化機制必須要仔細的探討。
在這篇論文中,我們研究了低溫複晶矽薄膜電晶體在交流訊號下的劣化。假設劣化的程度會和靠近源極和汲極的橫向電場的大小以及載子數目變化有關。當閘極電壓是從-15V掃到15V時,我們觀察到元件的劣化只會和閘極脈波下降的時間有關,和上升的時間無關。然而,我們第一次觀察到如果閘極電壓範圍都是小於臨限電壓的化,元件的劣化會同時和閘極脈波上升的時間以及下降的時間有關。
我們提出了薄膜電晶體的Slicing Model,它是考慮了電晶體通道的電阻以及閘極氧化層的電容,來解釋複晶矽電晶體在交流訊號下的劣化。在實驗的數據以及模擬的結果合理的對照之下,劣化的程度真的是會和靠近源極和汲極的橫向電場的大小以及載子數目變化有關。此外,利用模擬的結果引入一個新的指標,它和劣化的程度幾乎是呈正比。
對顯示面板上的周邊電路,NAND和NOR邏輯閘是基本是組成電路。當邏輯閘輸入端A和B分別為0以及1時,會出現汲極是浮動的現象。所以會出現新的交流訊號操作情況,稱為浮動汲極的交流操作,我們將在第三章討論。
Polycrystalline silicon (poly-Si) thin film transistors (TFTs) have recently attracted much attention in the application on the integrated peripheral circuits of active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode (AMOLED) displays. The significant advantages over amorphous silicon (a-Si) TFTs are in the higher current driving capability and the better reliability. In poly-Si TFT-controlled displays, poly-Si TFTs are used to implement pixel circuits and driving circuits on a single glass substrate to reduce system cost and posses compact module. Therefore, the poly-Si TFT is the best candidate to realize system–on–panel (SOP).
However, unlike pixel TFTs, TFTs in driver circuits are subjected to high-frequency voltage pulses. Therefore, the degradation mechanism under dynamic operation should be understood in detail.
In this thesis, the device degradation of low-temperature polycrystalline thin film transistor under AC stress has been investigated. The degree of degradation is concerned with the magnitude of the lateral transient electrical field and the variation of the number of the carriers near the source/drain. For the gate voltage swing of -15V to 15V, it is observed that the degradation depends on the falling time of the gate pulse but does not depend on the rising time. However, it is firstly observed that the degradation is both dependent of rising time and falling time if the voltage swings below the threshold voltage. TFT’s slicing model take channel resistance and oxide capacitance into consideration is proposed to explain the degradation of poly-Si TFTs under Gate Pulse Stress. A reasonable agreement between the experiment data and the simulation results reveals that the degradation is related to the transient electrical field and the various amount of the charge near the edges of the channel. In addition, a new index which can be simulated using a slicing model is proposed and it is almost proportional to the degradation degree.
For the peripheral circuit in poly-Si panel, NAND and NOR logic gates are the fundamental elements. When input terminals A and B of NAND and NOR are 0 and 1, respectively, floating drain TFTs appear. Therefore, a new AC stress condition is needed to discuss, called floating drain AC stress. We will also discuss the phenomenon for poly-Si TFT under floating drain AC stress in the chapter 3.
Chinese Abstract ……………………………………… I
English Abstract ………………………………………III
Acknowledgement ………………………………………V
Contents …………………………………………………VI
Figure Captions ………………………………………VIII

Chapter 1. Introduction

1-1.Overview of Low-Temperature Polycrystalline Silicon Thin Film Transistors (LTPS TFTs)………………………1
1-2. Motivation ……………………………………………3
1-3. Review of Degradation Model for TFT under AC Stress
…………………………………………………………5
1-4.Thesis Organization …………………………………7

Chapter 2. N-Poly-Si TFT under Gate Pulse Stress with Drain and Source Grounded

2.1 Experiments…………………………………………………9
2.1.1 Procedures of Fabrication of LTPS TFTs…9
2.1.2 AC Stress Conditions…………………………10
2.2 Results and Discussions…………………………………12
2.2.1 Frequency……………………………………12
2.2.2 Gate Voltage Leveling……………………15
2.2.3 Rising Time and Falling Time for Vg of ON
and OFF Regions……………………………………16
2.2.4 Rising Time and Falling Time for Vg in
the Depletion Region ……………………………18
2.2.5 Summary of Results ………………………19

2.3 Universal Exploration of the Degradation Mechanism for AC Stress…………………………………………………………20
2.3.1 Factors of Degradation mechanism ……20
2.3.2 The Transient Voltage Distribution in the
TFT Channel…………………………………………21
2.3.3 Transient Voltage Distribution for AC
Stress with Various Rising Time and Falling
Time …………………………………………………23
2.3.4 A new Index Π to estimate the degraded
degreee ……………………………………………26

Chapter 3 N-Poly-Si TFT under Gate Pulse Stress with Drain
Floating and Source Grounded

3.1 Introduction ………………………………………………27
3.2 Floating Drain AC Stress Model ………………………29
3.3 Experiments…………………………………………………30
3.4 Results and Discussions…………………………………31
3.4.1 Frequency……………………………………31
3.4.2 Vg Leveling…………………………………33
3.4.3 Rising Time and Falling Time for Vg of ON
and OFF Regions……………………………………35
3.4.4 Rising Time and Falling Time for Vg in
the Depletion Regios ……………………………36
3.5 Universal Exploration of the Degradation Mechanism for AC Stress…………………………………………………………37
3.5.1 Factors of Degradation mechanism ……37
3.5.2 The Transient Voltage Distribution in the
TFT Channel…………………………………………39
3.5.3 Transient Voltage Distribution for AC
Stress with Various Rising Time and Falling
Time …………………………………………………40
3.5.4 A new Index Π to estimate the degraded
degree ………………………………………………44

Chapter 4 Conclusion

References ………………………………………………………46
Vita ………………………………………………………………57
[1] J. G. Blake, J. D. III Stevens, and R. Young, “ Impact of low temperature polysilicon on the AMLCD market,” Solid State Tech., vol.41, pp.56-62,1998
[2] Y. Matsueda, T. Ozawa, M. Kimura, T. Itoh, K. Kitwada, T. Nakazawa, H.Ohsima, “A 6-bit-color VGA low-temperature poly-Si TFT-LCD with integrated digital data drivers,” in SID Tech. Dig., pp.879-882, 1998
[3] Y. Aoki,T. Lizuka, S. Sagi, M. Karube, T.Tsunashima, S. Ishizawa, K. Ando, H. Sakurai, T. Ejiri, T. Nakazono, M.Kobayashi, H. Sato, N. Ibaraki, M. Sasaki, and N. Harada, ”A 10.4-in. XGA low-temperature poly-Si TFT-LCD for mobile PC application,” in SID Tech. Dig., pp.176-179, 1999
[4] H. J. kim, D. kim, J.H. Lee, I.G. Kim, G. S. Moon, J. H. Huh, J. W. Huang, S. Y. Joo, K.W. Kim, and J.H. Souk, “A 7-in. full-color low-temperature poly-Si TFT-LCD,” in SID Tech. Dig., pp.184-187, 1999
[5] Kiyoshi Yoneda, Hidenori Ogata, Shinji Yuda, Kohji Suzuki, Toshifumi Yamaji, Shiro Nakanishi, Tsutomu Yamada, and Yoshiro Morimoto, “Optimization of low-temperature poly-Si TFT-LCDs and a large-scale production line for large glass substrates,” Journal of the SID, vol.9, pp.173-179, 2001
[6] Yasuhisa Oana, “Current and future technology of low-temperature poly-Si TFT-LCDs,” Journal of the SID, vol.9, pp.169-172, 2001
[7] Jun Hanari, “Development of a 10.4-in. UXGA display using low-temperature poly-Si technology,” Journal of the SID, vol.10, pp.53-56, 2002
[8] Mutsumi Kimura, Ichio Yudasaka, Sadao Kanbe, Hidekazu Kobayashi, Hiroshi Kiguchi, Shun-ichi Seki, Satoru Miyashita, Tatsuya Shimoda, Tokuro Ozawa, Kiyofumi Kitawada, Takashi Nakazawa, Wakao Miyazawa, and Hiroyuki Ohshima, “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display,” IEEE Trans. Electron Devices, vol. 46, pp2282-2288,1999.
[9] Mark Stewart , Robert S. Howell, Leo Pires, Mitiadis K. Hatakis, Webster Howard, and Olivier Prache, “Polysilicon VGA active matrix OLED display-technology and performance,” in IEDM Tech. Dig.,1998,pp.871-874
[10] Mark Stewart , Robert S. Howell, Leo Pires, Mitiadis K. Hatakis, Webster Howard, and Olivier Prache, “Polysilicon VGA active matrix OLED display-technology and performance,” IEEE Trans. Electron Devices, vol. 48, pp845-851,2001
[11] Tatsuya Sasaoka, Mitsunobu Sekiya, Akira Yumoto, Jiro Yamada, Takashi Hirano, Yuichi Iwase, Takao Yamada, Tadashi Ishibashi, Takao Mori, Mitsuru Asano, Shinichiro Tamura, and Tetsu Urabe, “A 13.0-inch AM-OLED display with top emitting structure and adaptive current mode programmed pixel circuit (TAC),” in SID Tech. Dig., pp.384-387, 2001
[12] Zhiguo Meng, Haiying Chen, Chengfeng Qiu, Hoi S. Kwok, and Man Wong,” Active-matrix organic light-emitting diode display implemented using metal-induced unilateral crystallized polycrystalline silicon thin-film transistors,” in SID Tech. Dig., pp.380-383, 2001
[13] Zhiguo Meng and Man Wong,” Active-matrix organic light-emitting diode displays realized using metal-induced unilateral crystallized polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 49, pp991-996,2002
[14] G. Rajeswaran, M. Itoh, M. Boroson, S. Barry, T. K. Hatwar, K. B. Kahen, K. Yoneda, R. Yokoyama, T. Yamada, N. Komiya, H. Kanno, and H. Takahashi, “Active matrix low temperature poly-Si TFT/OLED full color displays:development status,” in SID Tech. Dig., pp.974-977, 2000
[15] H. Kuriyama et al., ”An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., pp.38, 1992
[16] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K Sasaki, T. Nishida, T. Mine, E. Takeda and T. Nagano, “ Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, vol. 42, pp1305-1313,1995
[17] S. D. S. Malhi, H. Shichijo, S. K. Banerjee, R. Sundareson, M. Elahy, G. P. Pollack, W. Richarson, A. H. Sha, L. R. Hite, R. H. Womark, P. Chatterjee, and H. William, “ Characteristics and three-dimension integration of MOSFETs in a small-grain LPCVD polycrystalline silicon,” IEEE Trans. Electron Devices, vol. ED-32, no.2, pp258-281, 1985.
[18] Kaustav Banerjee, Shukri J. Souri, Pawan Kapur, and Krishna C. Saraswat, “3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and system-on-chip integration,” Proceedings of the IEEE, vol. 89, pp.602-633,2001
[19] H. J. Kim and J. S. Im, “New excimer-laser-crystallization method for producing large-grained and grain boundary-location-controlled Si films for thin film transistors,” Appl. Phys. Lett., vol.68, pp.1513-1515,1996
[20] M. Cao, S. Talwar, K. Josef Kramer, T. W. Sigmon, and K. C. Saraswat, “A high-performance polysilicon thin-film transistor using XeCl excimer laser crystallization of pre-patterned amorphous Si films,” IEEE Trans. Electron Devices, vol. 43, pp561-567,1996.
[21] J. H. Jeon, M. C. Lee, K. C. Park, and M. K. Han, “A new polycrystallines silicon TFT with a single grain boundary in the channel,” IEEE Electron Device Lett., vol. 22,pp.429-431,2001.
[22] S. Uchikoga and N. Ibaraki, “Low temperature poly-Si TFT-LCD by excimer laser anneal,” Thin Solid Films, vol. 383, pp.19-24, 2001
[23] K. Tanaka, H. Arai, ans S. Kohda, “Characteristics of offset-structure polycrystalline-silicon thin film transistors,” IEEE Electron Device Lett., vol. 9, pp.23-25, 1988.
[24] B. H. Min, C. M. Park, and M. K. Han, “A novel offset gated polysilicon thin film transistor without an additional offset mask,” IEEE Electron Device Lett., vol. 16, pp.161-163,1995.
[25] Byung-Hyuk Min and Jerzy Kanicki, “Electrical characteristics of new LDD poly-Si TFT structure tolerant to process misalignment, “IEEE Electron Device Lett., vol. 20, pp.335-337,1999.
[26] Shengdong Zhang, Ruqi Han, and Mansun J. Chan, “ A novel self-aligned bottom gate poly-Si TFT with in-situ LDD,” IEEE Electron Device Lett., vol. 22, pp.393-395,2001.
[27]Y. Uemoto, E. Fujii, F. Emoto, A. Nakamura, K. Senda, “A high-voltage polysilicon TFT with multigate structures,” IEEE Trans. Electron Devices, vol. 38, pp95-100,1991.
[28] Yasuyoshi Mishima and Yoshiki Ebiko, “Improved lifetime of poly-Si TFTs with a self-aligned gate-overlapped LDD structure,” IEEE Trans. Electron Devices, vol. 49, pp981-985,2002.
[29] M. Hatano, H. Akimoto, and T. Sakai, “A novel self-aligned gate-overlapped LDD poly-Si TFT with high reliability and performance,” in IEDM Tech. Dig.,1997, pp523-526
[30] Kwon-Young Choi, Jong-Wook Lee, and Min-Koo Han, “Gate-overlapped lightly doped drain poly-Si thin-film transistors for large area-AMLCD,” IEEE Trans. Electron Devices, vol. 45, pp1272-1279, 1998
[31] Philip M. Walker, Hiroshi Mizuta, Shigeyasu Uno, Yoshikazu Furuta, and David G. Hasko, “Improved off-current and subthreshold slope in aggressively scaled poly-Si TFTs with a single grain boundary in the channel,” IEEE Trans. Electron Devices, vol. 51, pp.212-219, 2004
[32] I-Wei Wu, Alan G. Lewis, Tiao-Yuan Huang, Warren B. Jackson, and Anne Chiang, “Mechanism and device-to-device variation of leakage current in polysilicon thin film transistors,” in IEDM Tech. Dig., 1990, pp. 867-870.
[33] K. R. Olasupo, M. K. Hatalis, “Leakage current mechanism in sub-micron polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 1218-1223, 1996.
[34] M. Lack, I-W. Wu, T. J. King, A. G. Lewis, “Analysis of leakage currents in poly-silicon thin film transistors,” in IEDM Tech. Dig., 1993, pp. 385-388.
[35] M. Hack, and A. G. Lewis, “Avalanche-induced effects in polysilicon thin-film transistors,” IEEE Electron Device Lett., vol. 12, pp. 203-205, 1991.
[36] M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio, “Floating body effects in polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 2234-2241, 1997.
[37] Anish Kumar K. P., Johnny K. O. Sin, Cuong T. Nguyen, and Ping K. Ko,” Kink-free polycrystalline silicon double-gate elevated-channel thin-film transistors,” IEEE Trans. Electron Devices, vol. 45, pp. 2514-2519, 1998.
[38] S. D. Zhang, C. X. Zhu, Johnny K. O. Sin, J. N. Li, and Philip K. T. Mok,” Ultra-thin elevated channel poly-Si TFT technology for fully-integrated AMLCD system on glass,” IEEE Trans. Electron Devices, vol. 47, pp. 569-574, 2000.
[39] F. V. Farmakis, J. Brini, G. Kamarinos, and C. A. Dimitriadis, “Anomalous turn-on voltage degradation during hot-carrier stress in polycrystalline silicon thin-film transistors,” IEEE Electron Device Lett., vol. 22, pp. 74-76, 2001.
[40] Noriji Kato, Takayuki Yamada, So Yamada, Takeshi Nakamura, and Toshihisa Hamano, “Degradation mechanism of polysilicon TFT’s under D.C. stress,” in IEDM Tech. Dig.,1992, pp677-680
[41] Satoshi Inoue, and Hiroyuki Ohshima, “New degradation phenomenon in wide channel poly-Si TFTs fabricated by low temperature process,” in IEDM Tech. Dig.,1996, pp781-784
[42] Satoshi Inoue, and Hiroyuki Ohshima, “Analysis of threshold voltage shift caused by bias stress in low temperature poly-Si TFTs,” in IEDM Tech. Dig.,1997, pp527-530
[42] M. Koyanagi, T. Shimatani, M. Tsuno, T. Matsumoto, N. Kato and S. Yamada, “ Evaluation of self-heating effect in poly-Si TFT using quasi three-dimensional temperature analysis” in IEDM Tech. Dig.,1993, pp97-100
[43] Yasuyoshi Mishima, Kenchi Yoshino, Michiko Takei, and Nobuo Sasaki, “Characteristics of low-temperature poly-Si TFTs on Al/glass substrates,” IEEE Trans. Electron Devices, vol. 48, pp. 1087-1091, 2001.
[44] C. Hu, S.C. Tam, F-C. Hsu, P-K. Ko, T-Y. Chan, and K.W. Terrill, “Hot-electron-induced MOSFET degradation- Modeling, monitor and improvement,” IEEE Trans. Electron Devices, vol. ED-32, pp. 375–385, Feb. 1985.
[45] Andreas Schwerin, Wilfried Hansch, and Werner Weber, “ The relationship between oxide charge and device degradation: A comparative study of n- and p- channel MOSFET’s,” IEEE Trans. Electron Devices, vol. ED-34, pp. 2493-2500, 1987.
[46] Tsu-Jae King, Michael G. Hack, and I-Wei Wu, “ Effective density-of-states distributions for accurate modeling of polycrystalline-silicon thin-film transistors, “ J. Appl. Phys., vol. 75, pp. 908-913, 1994.
[47] Wu, I.-W., Huang, T.-Y., Jackson, W.B., Lewis, A.G., and Chiang, A., “Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation,” IEEE Electron Device Lett., vol. 12, pp. 181–183, Sept. 1991.
[48] G.A.Armstrong, S. Uppal, S.D. Brotherton, and J.R. Ayres, “Differentiation of effects due to grain and grain boundary traps in laser annealed poly-Si thin film transistors,” Jpn. J. Appl. Phys., vol.37, pp. 1721-1726, 1998.
[49] F.V. Farmakis et al., “Grain and grain-boundary control of the transfer characteristics of large-grain polycrystalline silicon thin-film transistors,” Solid-State Electron., vol. 44, pp. 913-916, 2000.
[50] G. A. Armstrong, S. Uppal, S. D. Brotherton, and J. R. Ayres, ”Modeling of laser-annealed polysilicon TFT characteristics,” IEEE Electron Device Lett., vol. 18, pp315-318,1997.
[51] Yoshiaki Toyota, Takeo Shiba, and Makoto Ohkura,”A new model for device degradation in low-temperature n-channel polycrystalline silicon TFTs under ac stress,” IEEE Trans. Electron Devices, vol. 51,no.1, pp927-933, 2004.
[52] Yukiharu Uraoka, Noboyuki Hirai, Hiroshi Yano, Tomoaki Hatayama, and Takashi Fuyuki,”Hot carrier analysis in low-temperature poly-Si TFTs using picosecond emission microscope,” IEEE Trans. Electron Devices, vol. 51,no.1, pp28-35, 2004.
[53] Y. Uraoka, Y. Morita, H. Yano, T. Hatayama and T. Fuyuki, “ Gate length dependence of hot-carrier reliability in low-temperature poly-Si p-channel thin film transistors,” Jpn. J. Appl. Phys., vol.41, no.10, pp. 5894-5899, 2002
[54] C. A. Dimitriadis and P. A. Coxon, “Effects of temperature and electrical stress on the performance of thin-film transistors fabricated from undoped low-pressure chemical vapor deposited polycrystalline silicon,” Appl. Phys. Lett., vol. 54, pp. 620–623, 1989
[55] G. Fortunato, A. Pecora, G. Tallarida, L. Mariucci, C. Reita, and P. Migliorato, “Hot-carrier effects in n-channel polycrystalline thin-film transistors: A correlation between off-current and transconductance silicon variations,” IEEE Trans. Electron Devices, vol. 41, pp. 340–346, Feb. 1994.
[56] C. A. Dimitriadis, M. Kimura, M. Miyasaka, S. Inoue, F. V. Farmakis, J. Brini, and G. Kamarinos, “Effects of grain boundaries on hot-carrier induced degradation in large grain polysilicon thin-film transistors,” Solid-State Electron., vol. 44, pp. 2045–2051, 2000.
[57] V. K. Gueorguiev, Tz. E. Ivanov, C. A. Dimitriadis, S. K. Andreev, and L. I. Popova, “Oxide field enhancement corrected time dependent dielectric breakdown of polyoxides,” Microelectron. J., vol. 31, pp. 663–666, 2000.
[58] T. Yoshida, K. Yoshino, M. Takei, A Hara, N. Sasaki, and T. Tsuchiya, ”Experimental evidence of grain-boundary related hot-carrier degradation mechanism in low-temperature poly-Si thin-film-transistors,” in IEDM Tech. Dig., 2003, pp219-222.
[59] Y. Uraoka, K. Kitajima, H. Kirimura, H. Yano, T. Hatayama and T. Fuyuki, “ Degradation in low-temperature poly-Si thin film transistor depending on grain boundaries,” Jpn. J. Appl. Phys., vol.44, no.5A, pp. 2895-2901, 2005
[60] S. Bhattacharya, R. Kovelamudi, S. Batra, S. Banerjee, B.-Y. Nguyen, and R. Tobin, “Parallel hot-carrier-induced degradation mechanisms in hydrogen-passivated polysilicon-on-insulator LDD p-MOSFETs,” IEEE Electron Device Lett., vol. 13, pp. 491–493, Sept. 1992.
[61] F. V. Farmakis, C. A. Dimitriadis, J. Brini, G. Kamarinos, V. K. Gueorguiev, and Tz. E. Ivanov, “Hot-carrier phenomena in high temperature processed undoped-hydrogenated n-channel polysilicon thin-film transistors,” Solid-State Electron., vol. 43, pp. 1259–1266, 1999.
[62] Farmakis, F.V.; Dimitriadis, C.A.; Brini, J.; Kamarinos, G.; Gueorguiev, V.K., and Ivanov, T.E,“ Interface state generation during electrical stress in n-channel undoped hydrogenated polysilicon thin-film transistors,” Electron. Lett., vol. 34, pp. 2356–2357, 1998.
[63] F. V. Farmakis, J. Brini, G. Kamarinos, and C. A. Dimitriadis, “Anomalous turn-on degradation during hot-carrier stress in polycrystalline silicon thin-film transistors,” IEEE Electron Device Lett., vol. 22, pp. 74–76, Feb. 2001.
[64] Y. Uraoka, H. Yano, T. Hatayama and T. Fuyuki, “ Hot carrier effect in low-temperature poly-Si p-ch thin film transistor under dynamic stress,” Jpn. J. Appl. Phys., vol.41, part2, no.1A/B, pp. L13-L16, 2002
[65] C. Y. Huang, T. H. Teng, J. W. Tsai, and H. C. Cheng, “The instability mechanisms of hydrogenated amorphous silicon thin film transistors under AC bias stress,” Jpn. J. Appl. Phys., vol.39, Part.1, no.7A, pp. 3867-3871, 2000.
[66] Yuan Tang, Dae M. Kim, Yuag-Huei Lee, and Babak Sabi, “Unified characterization of two-region gate bias stress in submicrometer p-channel MOSFET’s,” IEEE Electron Device Lett., vol. 11, pp. 203-205, 1990.
[67] Mark Rodder, “On/off current ratio in p-channel poly-Si MOSFET’s: Dependence on hot-carrier stress conditions,” IEEE Electron Device Lett., vol. 11, pp. 346-348, 1990.
[68] Hastas, N.A., Dimitriadis, C.A., Brini, J., and Kamarinos G..,” Hot-carrier-induced degradation in short p-channel nonhydrogenated polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 49, pp. 1552–1557, Feb. 2002
[69] Suganuma, M., Satoh, T., and Tango, H., “Hot-carrier-induced degradation of threshold voltage in p-channel low-temperature poly-Si TFTs,” IEEE Electron Device Lett., vol. 39, pp. 1863-1865, 2003.
[70] M. Koyanagi, A. G. Lewis, R. A. Martin, T. Y. Huang, and J. Y. Chen, “Hot-electron-induced punchthrough (HEIP) effect in submicrometer PMOSFETs,” IEEE Trans. Electron Devices, vol. ED-34, pp. 893-844, 1987
[71] Takeda E., et al., “ Comparison of characteristics of n-channel and p-channel MOSFET’s for VLSI’s,” IEEE Trans. Electron Devices, vol. 40, pp. 611-618, 1983
[72] I-Wei Wu, Warren. B. Jackson, Tiao-Yuan, Alan G. Lewis, and Anne Chiang, ”Mechanism of device degradation in n- and p-channel polysilicon TFT’s by electrical stressing,” IEEE Electron Device Lett., vol. 11,pp.167-170,1990.
[73] Michael Hack, Alan G. Lewis, and I-Wei Wu, ”Physical models for degradation effects in polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 40, pp890-897, 1993.
[74] F.V.Farmakis, C.A. Dimitriadis, J. Brini, G.Kamarinos, V.K. Gueorguiev, and T.E. Ivanov, ”Hot-carrier phenomena in high temperature processed undoped-hydrogenated n-channel polysilicon thin film transistors (TFTs),” Solid-State Electronics, vol.43, pp.1259-1266, 1999.
[75] Alan G. Lewis, I-Wei Wu, Anne Chiang, and Richard H. Bruce, ”Degradation of polysilicon TFTs during dynamic stress,” in IEDM Tech. Dig.,1991, pp575-578
[76] M. S. Rodder and D. A. Antoniadis, “Hot carrier effects in hydrogen passivated p-channel poly-Si MOSFETs,” IEEE Trans. Electron Devices, vol. 34,no.5, pp1079, 1987.
[77] S. Banerjee, R. Sundaresan, H. Shichijo and S. Mali, “ Hot electron degradation of n-channel poly-Si MOSFETs,” IEEE Trans. Electron Devices, vol. 35,no.2, pp152, 1988.
[78] N. D. Young, A. Gill and M.J. Edwards, ”Hot carrier degradation in low temperature processed poly-Si TFTs,” Semicond. Sci. and Technol., vol. 7, p.p.1103, 1992
[79] N. D. Young and J.R. Ayres, “Negative gate bias instability in polycrystalline silicon TFT’s,” IEEE Trans. Electron Devices, vol. 42,no.9, pp1623-1627, 1995.
[80] A. Khamesra, R. Lal, J. Vasi, A. Kumar K. P. and J. K. Sin, “Device degradation of n-channel poly-Si TFT’s due to high-field, hot carrier and radiation stressing,” Physical and Failure Analysis of Integrated Circuits, 2001. IPFA 2001. Proceedings of the 2001 8th International Symposium on the, pp258-262, 2001
[81] N. D. Young and J.R. Ayres, “Electron trapping instabilities in polycrystalline silicon thin film transistors,” Semicond. Sci. and Technol., vol. 5, p.p.728-732, 1990
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top