跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 11:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳貞儀
研究生(外文):Chen Yi Wu
論文名稱:複晶矽薄膜電晶體之晶粒控制技術發展與缺陷增強高電場效應分析
論文名稱(外文):Study of Grain Control Technology and the Grain BoundaryTrap-Enhanced Kink Effect in Poly-Si TFTs
指導教授:冉曉雯
指導教授(外文):Hsiao Wen Zan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:66
中文關鍵詞:複晶矽薄膜電晶體固態雷射晶粒控制高電場效應
外文關鍵詞:Polycrystalline siliconThin film transistorSolid-state laserGrain controlKink effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本論文分為二個部份,第一部份,我們研究一種晶粒控制技術:熱滯留增強結晶。利用熱儲存層,吸收雷射能量,持續提供熱能於矽膜,並減緩散熱,使晶粒得以控制於熱儲存膜處,並增大晶粒尺寸。第二部份,我們研究了晶粒影響之高電場效應。
首先,我們提出一個新的儲熱材料,可利用於熱滯留增強晶粒成長技術。此新穎的儲熱材料為”類鑽碳”(DLC),類鑽碳在各個波段中顯現出非常好的光學吸收性,故類鑽碳可利用於現今雷射機台例如:較短波長的準分子雷射(308nm)與長波長的固態雷射(532nm),做為儲熱材料。
本實驗中,我們成功地利用了XeF準分子雷射搭配類鑽碳熱儲存膜,控制橫向晶粒的成長位置,且晶粒尺寸可達1毫米。此外此晶粒的結晶品質可由拉曼分析參數如:峰值位置與半高寬,分別可達516.25cm-1與4.9 cm-1,是良好的結晶品質。
第二部份中,我們研究多晶矽薄膜電晶體元件受晶粒影響之高電場效應:扭結效應(Kink Effect)。由於扭結效應主要受雪崩效應(Avalanche Multiplication)引起,故我們萃取累增因子(Multiplication Factor)為扭結效應之指標。發現累增因子在多晶矽中被晶粒影響的主要因素有二:(1)晶粒邊界位障、(2)晶粒尺寸。當晶粒邊界位障變大時,由於位障所產生的局部高電場隨之變大,使累增因子也變大。當晶粒尺寸變大時,可減緩位障所產生的局部高電場,故累增因子隨之變小。
另外,當雷射能量上昇時,多晶矽膜中晶粒邊界位障變小且晶粒尺寸變大,故加大雷射能量可在此二方面使累增因子減小。最後,我們發現固態晶體雷射之扭結效應較準分子雷射輕微。由於準分子雷射結晶之多晶矽膜具有較高的晶粒邊界位障,這更加佐証了前述的理論。也就是:晶粒邊界位障會增強高電場雪崩效應。
Abstract
This thesis divided into two parts. First, we studied the grain control technology: heat retaining enhanced crystallization (H-REC). The heat retaining layer absorbs the laser energy and keeps providing heat to amorphous silicon film. Also the heat retaining layer slows down the heat dispersion. This heat retaining enhanced crystallization technology makes it possible to control the position of grain growth and enlarging the grain size, too.
First, we proposed a new heat retaining material of the heat retaining enhanced crystallization. The novel heat retaining material: “diamond like carbon” (DLC). It shows great optical absorbance over a wide wavelength. Therefore, DLC can be used in the laser instrument nowadays, such as the shorter wavelength laser: excimer laser (308nm) and the longer wavelength laser: solid state laser (532nm).
In out experiment, we successfully controlled the position of lateral growth grain crystallized by XeF laser (351nm) and the heat retaining material: DLC. The maximum grain size can achieve 1um. Moreover the crystallinity can be realized by the Raman characteristics for instance, the Raman peak position and full width at half maximum (FWHM) are 516.25cm-1 and 4.9cm-1 respectively. These reveal great qualities of crystallized film.
Second, we studied in the grain affected high electric field effect in polysilicon thin film transistors: “Kink Effect”. Kink effect mainly caused by the avalanche multiplication in depletion region near the drain. So we take the multiplication factor as a reference parameter to represent the influence of kink effect. It is found that the multiplication factor is mainly affected by two factors: (i) grain boundary barrier height (EB) and (ii) grain size (LG). When the grain boundary barrier height increases, the local high electric field caused by grain boundary barrier is enlarged and the multiplication factor becomes larger. Moreover, when the grain size increases, the local high electric field is reduced and the multiplication factor is also becomes smaller. Increasing the laser energy can suppress the kink effect in both manners: (i) the grain boundary barrier height is reduced and (ii) the grain size is enlarged.
Finally, we found that kink effect is less serious in solid state laser devices than in excimer laser devices. Since the polysilicon film crystallized by excimer laser has higher grain boundary barrier height than it crystallized by solid state laser. This also proves the proposed mechanism that: the grain boundary barrier height enlarges local electric field and enhances avalanche multiplication effect.
Contents
Chinese Abstract I
English Abstract III
Acknowledgment (Chinese) V
Content VI
Table Captions VIII
Figure Captions IX
Chapter.1 Introduction
1.1 Background 1
1.2 Overview of grain control technologies 2
1.3 Introduction of diamond like carbon (DLC) 3
1.4 Laser crystallization mechanisms 3
1.5 Grain barrier carrier transport mechanism under high
lateral field In poly-Si TFTs 4
1.5.1 Seto' s model 4
1.5.2 Possible grain boundary carrier transport mechanism
in poly-Si TFTs 6
1.6 Motivation 9
1.7 Thesis outline 10
Chapter.2 Experimental and Material Analysis
2.1 Instrument 12
2.1.1 Introduction of laser crystallization instrument 12
2.1.2 Introduction of Raman 13
2.2 Diamond like carbon characteristics 13
2.2.1 Diamond like carbon deposition 13
2.2.2 Material analysis 13
2.3 Amorphous silicon thin film with and without
capped DLC crystallized by ELA 15
2.3.1 Sample fabrication and Laser irradiation 15
2.3.2 Material analysis 16
2.4 Crystallization mechanism for 1000A a-Si with
heat retaining Layer of DLC 18
Chapter.3 Analysis of Kink Effect in Poly-Si TFTs
3.1 Possible kink effect related mechanisms 20
3.2 Device Fabrication 20
3.3 Parameter extracted method 21
3.4 Electrical characteristics 22
3.4.1 Different laser crystallized quality 22
3.4.2 Different bias voltage 24
3.4.3 Different laser crystallization 24
3.4.4 Kink current 25
Chapter.4 Conclusion 27
Reference 30
Tables
Figures
References

[1] A. G. Lewis, I-W. Wu, T. Y. Huang, A. Chiang, and R. H. Bruce, “Active matrix liquid crystal display design using low and high temperature processed polysilicon TFTs,“ in IEDM Tech. Dig., 1990, pp. 843-846.
[2] Y. Matsueda, M. Ashizawa, S. Aruga, H. Ohshima, and S. Morozumi, “New technologies for compact TFT LCDs with high-aperture ratio,“ Soc. Information Display, Tech. Dig., pp. 315-318, 1990.
[3] R. G. Stewart, S. N. Lee, A. G. Ipri, D. L. Jose, D. A. Furst, S. A. Lipp, and W. R. Roach, “A 9V polysilicon LCD with integrated gray-scale drivers,“ Soc Information Display, Tech. Dig., pp. 319-322, 1990.
[4] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanaka, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM Cell Technology Using a Phase-Shift Lithography,” IEEE Trans. Electron Devices, Vol. 42, No. 7,pp.1305-1313,1995.
[5] S. D. S. Malhi, H. Shichijo, S. K. Banerjee, R. Sundaresan, M. Elahy, G. P. Polack, W. F. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K. Chatterjee, and H. W. Lam, “Characteristics and Three-Dimensional Integration of MOSFETs in Small-Grain LPCVD Polycrystalline Silicon,” IEEE Trans. Electron Devices, Vol.32, No.2, pp.258-281,1985.
[6] K. Yoshizaki, h. Takahashi, Y. Kamigaki, T. Yasui, K. Komori, and H. Katto, ISSCC Digest of tech. Papers, pp. 166, February 1985.
[7] N. D. Young, G. Harkin, R.M. Bunn, D. J. McCulloch, and I.D. French, “The Fabrication and Characterization of EEPROM Arrays on Glass Using a Low-Temperature Poly-Si TFT Process,” IEEE Trans. Electron Devices, Vol. 43, No. 11, pp.1930-1936,1996.
[8] T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, “400 dpi Integrated Contact Type Linear Image Sensors with Poly-Si TFT’s Analog Readout Circuits and Dynamic Shift Registers,” IEEE Trans. Electron Devices, Vol.38, No.5, pp. 1086-1039,1991.
[9] Y. Hayashi, H. Hayashi, M. Negishi, T. Matsushita, “ A Thermal Printer Head with CMOS Thin-Film Transistors and Heating Elements Integrated on a Chip,” IEEE Solid-State Circuits Conference (ISSCC), pp.266, 1998.
[10] N. Yamauchi, Y., Inaba, and M. Okamura, “An Integrated Photodetector- Amplifier using a-Si p-i-n Photodiodes and Poly-Si Thin-Film Transistors,” IEEE Photonic Tech. Lett., Vol. 5, pp. 319, 1993.
[11] M. G. Clark, “Current Status and Future Prospects of Poly-Si,” IEE Proc. Circuits Devices Syst., Vol. 141, No. 1, pp. 3.3, 1994.
[12] S. D. S. Malhi, H. Shichijo, S. K. Banerjee, R. Sundareson, M. Elahy, G. P. Pollack, W. Richardson, A. H. Sha, L. R. Hite, R. H. Womark, P. Chatterjee, and H. William, “Characteristics and three-dimension integration of MOSFETs in a small-grain LPVCD polycrystalline silicon,” IEEE Trans. Electron Devices, Vol. ED-32, No. 2, pp. 258-281, 1985.
[13] N. Yamauchi, J-J. J. Hajjar and Rafael Reif, “Drastically improved performance in poly-Si TFTs with channel dimensions comparable to grain size”, IEDM Tech. Dig., pp. 353-356, 1989.
[14] A. T. Voutsas, A. Limanov and J. S. Im “Effect of process parameters on the structural characteristics of laterally grown, laser-annealed polycrystalline silicon films” Journal of Applied Physics Vol.94, No.12, pp.7445-7752, 2003.
[15] Chang-Ho OH, Motohiro OZAWA and Masakiyo MATSUMURA “ A Novel Phase-Modulated Excimer-Laser Crystallization Method of Silicon Thin Films” Jpn. J Appl. Phys. Vol.37, No. 5A, pp. L492-L495, 1998.
[16] Akito HARA, Michiko TAKEI, Fumiyo TAKEUCHI, Katsuyuki SUGA, Kenichi YOSHINO, Mitsuru CHIDA, Tatsuyu KAKEHI, Yoshiki EBIKO, Yasuyuki SANOand Nobuo SASAKI, “High Performance Low Temperature Polycrystalline Silicon Thin Film Transitors on Non-alkaline Glass Produced Using Diode Pumped Solid State Continuous Wave Laser Lateral Crystallization”, Jpn. J Appl. Phys. Vol.43, No.4A, pp.1269-1276, 2004.
[17] Ryoichi Ishihara, Paul Ch. van der Wilt, Barry D. van Dijk, J. W. Metselaar and C. I. M. Beenakker, “Property of Single-Crystalline Si TFTs Fabricated with µ-Czochralski (Grain Filter) Process”, Proc. of SPIE Vol.5004, pp.10-19, (2003).
[18] C. H. Kim, I. H. Song, S. H. Jung and M. K. Han, “A New High-Performance Poly-Si TFT by imple EXcimer Laser Annealing on Selectively Floating a-Si Layer”, IEDM Tech. Dig., pp. 34.3.1-34.3.4, 2001.
[19] Wenchang Yeh, Yuchung Liu, Guozhao Chen, Jia-Xing Lin, Chi-Lin Chen, Yu-Chen Chen, Po-Hao Tsai, “Development of photosensitive SIONy film for 308nm wavelength by SiH2 based PECVD and its application to heat retaining enhanced crystallization method”, AMLCD ,pp247-250, 2004.
[20] J. Y. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Physics, 46, 5247, (1975).
[21] Toshiyuki SAMESHIMA and Nobuyuki ANDOH, “Heating Layer of Diamond-Like Carbon Films Used for Crystallization of Silicon Films”, Jpn. J. Appl. Phys. Vol. 44, No. 10, pp. 7305–7308, 2005.
[22] Zan, Hsiao Wen ; Huang, Chang-Yu; Saito, Kazuya; Tamagawa, Kouichi; Chen, Jack; Wu, Tung Jung. “The crystallization mechanism of poly-Si thin film using high-power Nd:YAG laser with Gaussian beam profile.” submitted to MRS.
[23] B. Eitan and D. Frohman-Bentchkowsky, IEEE Trans. Electron Devices, vol. ED-29, pp.254-266, 1982.
[24] R. R. Troutman, IEEE Trans. Electron Devices, vol. ED-24, pp.1266-1268, 1977.
[25] W. Fichtner and H. W. Potzl, Int. J. Electron., 46, pp.33, 1979.
[26] A. T. Hatzopoulos, D. H. Tassis, and C. A. Dimitriadis, “Analytical on-state current model of polycrystalline silicon thin-film transistors including the kink effect”, Appl. Phys. Lett. 87, 063501 ,2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 蘇榮基、羅龍飛(1996):室內溫水游泳池之淡、旺季分析討論以台中縣太平鄉洋洋室內溫水游泳池為例。大專體育,25,59-62頁。
2. 鄭順璁(2001):台北市YMCA游泳池訓練班消費者行為之研究。國立體育學院論叢,12(1),175- 188頁。
3. 廖慶隆、陳天賜(1999):民間參與公共建設方式之研析。中華道路,38(1),21-32頁。
4. 黃金柱、林木俊、沈莉青、廖志猛(1993):民眾參與休閒運動態度和參與行為之研究-以台北市四季潛水游泳會為例。國立體育學院論叢,4(1),69-93頁。
5. 莊庭禎(1992):網球運動消費者行為在休閒生活型態上之探討。嘉南學報,18,70-78頁。
6. 陳明坤(1995):民眾選擇運動場所態度和參與行為之研究-以台中市溫水游泳池為例。興大體育學報,5,35-65頁。
7. 陳和睦(1993):游泳池的經營管理。國民體育季刊,22(1),76-85頁。
8. 洪嘉文(2003):國立高級中等學校游泳池營運管理政策評估分析。中華體育,17,17-25頁。
9. 洪嘉文(2001):學校體育經營與管理之革新趨勢與發展策略。大專體育學刊,3(1),117-190頁。
10. 林忠程、陳建勳(2002):高雄市游泳運動俱樂部消費者行為之研究。文藻學報,16,347-367頁。
11. 呂執中、林懿貞(2001):客戶關係管理之策略性應用。品質管制月刊,37,20-23頁。
12. 李士範(1992):游泳池之規格建材興建與管理。文化體育,11,52-57頁。
13. 尤新吉(1993):公立游泳池經營管理。國民體育季刊,26 (1), 86-89頁。