跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/02/26 15:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂怡萱
研究生(外文):I-Hsuan Lu
論文名稱:二氧化鈦奈米管於染料敏化太陽能電池之探討
指導教授:諸柏仁
指導教授(外文):Po-Jen Chu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:161
相關次數:
  • 被引用被引用:26
  • 點閱點閱:564
  • 評分評分:
  • 下載下載:157
  • 收藏至我的研究室書目清單書目收藏:4
本研究主要目的為探討使用二氧化鈦奈米管應用於薄膜電極對於染料敏化太陽能電池效能的影響且對此議題建立研究方法。於此提出一簡便、低製備成本且具有高產率、均一性及熱穩定性佳之二氧化鈦奈米管的製作方式,其可直接採用商業化的二氧化鈦顆粒(微米級)於強鹼的環境下經由迴流合成的方式製備出二氧化鈦奈米管。
由XRD、SEM及TEM的鑑定可知二氧化鈦奈米管在450℃煅燒過後的表面型態不會有所改變亦維持中空管狀結構,且為銳鈦礦的晶相,亦形成有利於工作電極之狀態。然而,經由IR、XPS、UV-vis及ASAP的分析得知二氧化鈦奈米管表面具有較多的OH官能基、高比表面積及高孔隙度的特性,使得二氧化鈦奈米管上可吸附染料分子的數量增加。且由XPS檢測染料吸附於二氧化鈦表面後之束縛能,可知染料分子與二氧化鈦奈米管表面產生化學吸附,能夠有利於染料的激發電子轉移至二氧化鈦導帶,以產生較大的電流值(Isc)達25mA。
奈米級的電極材料容易因為表面電荷作用而造成聚集的情況產生,因此使用硝酸水溶液對二氧化鈦奈米管表面進行修飾以增加奈米管間的靜電作用力,使得材料在鍍液中的分散效果較佳,有利於得一表面較為平整的薄膜電極,但因薄膜電極的孔徑減小,造成電解質於薄膜內部擴散不易而無法使電流值有顯著的提升,僅可達7mA。
在元件方面,主要比較二氧化鈦奈米管與一般常用的Degussa P25奈米顆粒為主的薄膜電極。由實驗結果顯示,可知經元件設計改良過後的測試條件下,使用二氧化鈦奈米管取代Degussa P25的染料敏化太陽能電池之光電轉換效率最佳可達到6.58%。
The study is mainly to discuss the effects of the titanium dioxide nanotube(TiNT) applied in thin film electrode on the performance of the dye-sensitized solar cell and to set up a research method for the study. The method of producing the TiNT is within the simple way, low fabrication cost, uniformly size, and highly thermal stable. Moreover, the yield is higher than the previous art. The titanium dioxide nanotube(TiNT) can be directly fabricated from commercial titanium dioxide particle(micro-level) under the strong base condition via reflux reaction.
After being calcined at 450℃, by XRD, SEM, and TEM images , the TiNT surface morphology would not be changed and still keep anatase phase, which is favorable to the performance of work electrode. However, many hydroxyl groups on the TiNT surface, high surface area and high porosity characteristic be able to increase the amount of adsorbed dye molecules on the TiNT, by IR, XPS, UV-vis and ASAP. From XPS, it is clear to see that the excited electron of dye from bipyridyl ring transfers to the TiO2 conduction band, producing great magnitude of short circuit current to reach 25mA.
The electrode material in the Nano-scale makes it easier to create the accumulation due to the surface charge interaction; on the basis of electrostatic force, HNO3 solution is used to modify the TiNT to enhance dispersion. Hence, the electrode material causes better dispersion in TiO2 paste and advantageous to form a smoother thin film electrode. Because of the small pore size in thin film electrode, the electrolyte becomes hard to diffuse into the interior of thin film, and in addition, it’s unable to enhance the short circuit current. It only may reach 7mA.
In the devices, when we compared the thin film electrode composed of the TiNT to the Degussa P25-used one, the experiment data demonstrated that TiNT-used device has the best efficiency to achieve 6.58%.
中文摘要…………………………………………………………………I
英文摘要…………………………………………………………………II
目錄………………………………………………………………………IV


第一章 緒論…………………………………………………………1
1-1 前言………………………………………………………………1
1-2 太陽能電池簡介…………………………………………………2
1-2-1 結晶矽太陽能電池………………………………………3
1-2-2 薄膜太陽能電池…………………………………………4
1-2-3 有機太陽能電池…………………………………………8
1-3 研究動機…………………………………………………………12

第二章 文獻回顧……………………………………………………13
2-1 染料敏化太陽能電池工作原理…………………………………13
2-2 二氧化鈦簡介……………………………………………………18
2-2-1 二氧化鈦奈米粉體製備與特性...………………………20
2-2-2 二氧化鈦奈米管製備與特性..…………………………22
2-2-3 二氧化鈦薄膜製備與特性………………………………25
2-3 染料敏化太陽能電池的組成結構………………………………27
2-3-1 多孔性奈米二氧化鈦薄膜…..…………………………27
2-3-2 染料敏化劑………………………………………………29
2-3-3 電解質溶液……………………………………………34
2-4 太陽能電池電壓–電流輸出特性………………………………37
第三章 實驗技術與原理……………………………………………40
3-1 二氧化鈦奈米管製備……………………………………………40
3-2 二氧化鈦奈米管之修飾…………………………………………41
3-2-1 二氧化鈦奈米管利用硝酸修飾………………………………41
3-2-2 二氧化鈦奈米管混摻導電高分子……………………………41
3-3 二氧化鈦薄膜電極製備…………………………………………42
3-4 電解質製備………………………………………………………43
3-4-1 液態電解質………………………………………………43
3-4-2 膠態高分子電解質薄膜…………………………………44
3-5 元件封裝…………………………………………………………44
3-6 實驗藥品…………………………………………………………46
3-7 儀器與設備………………………………………………………47
3-8 分析儀器應用原理………………………………………………48
3-8-1 X光繞射儀………………………………………48
3-8-2 掃瞄式電子顯微鏡…….………………………49
3-8-3 穿透式電子顯微鏡………………………………50
3-8-4 傅立葉式紅外線吸收光譜儀……………………51
3-8-5 熱重分析儀…………………………………………52
3-8-6 紫外光-可見光吸收光譜儀………………………52
3-8-7 交流阻抗分析儀……………………………………53
3-8-8 氮氣等溫吸附/脫附儀….…………………………55
3-8-9 X射線光電子能…………………………………56
3-8-10 拉曼光譜儀……………………………………………56
3-8-11 太陽能電池I-V曲線量測儀器…………………………57

第四章 結果與討論………………………………………………59
4-1 薄膜電極材料分析………………………………………………59
4-1-1 二氧化鈦奈米管製備…………………………………59
4-1-2 二氧化鈦奈米管熱穩定性分析………………………67
4-1-3 二氧化鈦奈米管表面分析……………………………73
4-1-4 二氧化鈦奈米管比表面積與孔徑體積分佈…………80
4-2 薄膜電極分析……………………………………………………85
4-2-1 電極材料之修飾………………………………………85
4-2-2 電極材料混摻導電高分子……………………………90
4-2-3 電極厚度與表面分析…………………………………95
4-3 染料影響之探討………………………………………………98
4-3-1 不同反應濃度下之二氧化鈦奈米管..…………………98
4-3-2 二氧化鈦奈米管混摻導電高分子……………………103
4-3-3 染料吸附量分析………………………………………105
4-4 電解液之分析…………………………………………………112
4-5 染料敏化太陽能電池電壓電流之表現………………………115
4-5-1 不同型態的二氧化鈦奈米管…………………………115
4-5-2 經硝酸修飾的二氧化鈦奈米管………………………119
4-5-3 二氧化鈦奈米管混摻導電高分子……………………122
4-5-4 TiCl4處理之影響……………………………………125
4-5-5 離子性液體(Ionic Liquid)添加之影響………………127
4-5-6 元件設計之影響………………………………………129

第五章 結論……………………………………………………133

參考文獻……………………………………………………………136

附錄…………………………………………………………………146
〔1〕 http://www.solar-i.com/know.html#12
〔2〕 黃建昇﹐結晶矽太陽電池發展近況﹐工業材料雜誌 2003﹐203期﹐150.
〔3〕 郭明村﹐薄膜太陽電池發展近況﹐工業材料雜誌 2003﹐203期﹐138.
〔4〕 S. Guha et al﹐Appl. Phys. Lett 1999﹐74﹐1860
〔5〕 Antonio Luaue and Steven Hegedus﹐Handbook of photovoltaic Science and
Enginnering﹐2004.
〔6〕 李永龍﹐國立成功大學電機工程研究所碩士論文﹐1999.
〔7〕 H. Shirakawa﹔C. K. Chiang﹔C. R. Fincher﹔Y. W. Park﹔A. J. Heeger﹔E.
J. Louis﹔S. C. Gau and A. G. MacDiarmid﹐Phys. Rev. Lett. 1977﹐39,1098.
〔8〕 L Bozano﹔S. A. Carter﹔J. C. Scott﹔G. G. Malliaras﹔P. J.Brock﹐Appl.
Phys. Lett. 1999﹐74﹐1132.
〔9〕 D. Braun﹔A. J. Heeger and H. Koremer﹐J. Electronic Materials 1991﹐20﹐
945.
〔10〕D. Braun﹔A. J. Heeger﹐Appl. Phys. Lett. 1991﹐58﹐1982.
〔11〕K. S. Narayan and Th. B. Singh﹐Appl. Phys. Lett. 1999﹐74﹐3456.
〔12〕F. Hide﹔B. J. Schwartz﹔M. A. Diaz-Gracia and A. J. Heeger﹐Chem.Phys.
Lett. 1996﹐256﹐424.
〔13〕T. J. Savenije﹔J. M. Warman and A. Goossens﹐Chem. Phys.
Lett. 1998﹐287﹐148.
〔14〕G.Yu﹔J. Gao﹔J. C. Hummelen﹔F. Wudl and A. J. Heeger﹐Science 1995﹐
270﹐1789.
〔15〕T. Fromherz﹔F. Padinger﹔D. Gebeyehu﹔C. Brabec﹔J. C. Hummelen﹔N. S.
Sariciftci﹐Sol. Energy Mater. Sol. Cells 2000﹐63﹐61.
〔16〕J. F. Eckert﹔J. F. Nicoud﹔J. F. Nierengarten﹔S. G. Liu﹔L. Echegoyen﹔
F.Barigelletti﹔N. Armaroli﹔L. Ouali﹔V. Krasnikov and G.Hadziioannou﹐
J. Am. Chem. Soc. 2000﹐122﹐7467.
〔17〕Frank Hurd and Robert Livingston﹐J. Phys. Chem. 1940﹐44﹐865.
〔18〕S. Chaberek, A. Shepp and R. J. Allen﹐J. Phys. Chem. 1965﹐69﹐641.
〔19〕S. Chaberek, A. Shepp and R. J. Allen﹐J. Phys. Chem. 1965﹐69﹐647.
〔20〕S. Chaberek, A. Shepp and R. J. Allen﹐J. Phys. Chem. 1965﹐69﹐2834.
〔21〕Kearns et al.﹐J. Am. Chem. Soc. 1967﹐89﹐5456.
〔22〕H. Tsubomura﹔M. Matsumura﹔Y. Nomura and T. Amamiya﹐Nature 1976﹐261﹐
402.
〔23〕B. O’Regan and M. Grätzel﹐Nature 1991﹐353﹐737.
〔24〕M. Grätzel﹐Inorg. Chem. 2005﹐44﹐6841.
〔25〕Zhong-Sheng Wang﹔Masatoshi Yanagida﹔Kazuhiro Sayama and Hideki
Sugihara﹐Chem. Mater. 2006 ﹐18﹐2912-2916
〔26〕B. O’Regan and M Grätzel﹐Nature 1991﹐353﹐737–740.
〔27〕M. Grätzel﹐Nature 2001﹐414﹐338–344.
〔28〕M. Grätzel﹐J. Photochem. and Photobio. A:Chem. 2004﹐164﹐3–14.
〔29〕A. Hagfeldt and M. Grätzel﹐Chem. Rev. 1995﹐95﹐49–68.
〔30〕K. Kalyanasundaram and M. Grätzel﹐Coord. Chem. Rev. 1998﹐177﹐347–414.
〔31〕M. Grätzel﹐Current Opinion in Colloid and Interface Science 1999﹐4﹐
314–321.
〔32〕Cahen et al.﹐J.Phys.Chem. B 2000﹐104﹐2053–2059.
〔33〕A. Fujishima et al.﹐Sol. Energy Mater. Sol. Cells 2004﹐81﹐197–203.
〔34〕Shogo Nakade﹔Yohei Makimoto﹔Wataru Kubo﹔Takayuki Kitamur﹔Yuji Wada﹔
and Shozo Yanagida﹐J. Phys. Chem. B 2005, 109, 3480–3487.
〔35〕L. Brus﹐Phys. Rev. B 1996﹐53﹐4649–4656.
〔36〕Cahen et al.﹐J. Phys. Chem. B 2000﹐104﹐2053–2059.
〔37〕J. Bisquert﹐J. Phys. Chem. B 2002﹐106﹐325–333.
〔38〕A. Giraudeau﹔F. –R. F. Fan﹔A. J. Bard﹐J. Am. Chem. Soc. 1980﹐16,102.
〔39〕I. Bedjat﹔P. V. Kamat ﹐J. Phys. Chem. 1995﹐99﹐9182–9188.
〔40〕R. W. Fessenden﹔P. V. Kamat﹐J. Phys. Chem. 1995﹐99﹐12902-12906.
〔41〕P. D. Cozzoli﹔R. Comparelli﹔E. Fanizza﹔M. L. Curri﹔A. Agostiano﹔D.
Laub﹐J. Am. Chem. Soc. 2004﹐126﹐3868–3879.
〔42〕K. M. Reddy﹔S. V. Manorama﹔A. R. Reddy﹐Mater. Chem. and Phy. 2002﹐
78﹐239–245.
〔43〕K. Nagaveni﹔M. S. Hegde﹔N. Ravishankar﹔G. N. Subbanna﹔G. Madras﹐
Langmuir 2004﹐20﹐2900–2907.
〔44〕M.Grätzel﹐Nature 2001﹐414﹐338-344.〔45〕Modestov D﹔Lev O.﹔J.
Photochem. and Photobio. A:Chem. 1998﹐112﹐261–270.
〔46〕高廉﹐奈米光觸媒﹐五南出版社 2004.
〔47〕T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Materials
1999﹐11,1307.
〔48〕Patrick Hoye﹐Langmuir 1996, 12, 1411-1413.
〔49〕Kasuga; Tomoko (Aichi-ken, JP); Hiramatsu; Masayoshi (Nagoya, JP)
Crystalline titania and process for producing the same 2000
〔50〕Kasuga; Tomoko (Aichi-ken, JP); Hiramatsu; Masayoshi (Nagoya, JP)
Crystalline titania having nanotube crystal shape and process for
producing the same 2003
〔51〕Zeng﹐H.C.﹔Liu﹐S.M.﹔Gan﹐L.M.﹔Liu﹐L.H.﹔Zhang﹐W.D.﹐Chem.Mater.
2002﹐14﹐1391–1397.
〔52〕Kasuga﹐T.﹔Hiramatsu﹐M.﹔Hoson﹐A.﹔Sekino﹐T.﹔Niihara﹐K.﹐Langmuir
1998﹐14﹐3160–3163.
〔53〕Kasuga﹐T.﹔Hiramatsu﹐M.﹔Hoson﹐A.﹔Sekino﹐T.﹔Niihara﹐K.﹐Adv.
Mater. 1999﹐11﹐1307.
〔54〕Chen﹐Q.﹔Peng﹐L.M.﹔Du﹐G.H.﹔Che﹐R.C.﹔Yuan﹐Z.Y.﹐Am. Inst. Phys.
2001﹐79﹐3702.
〔55〕Lee﹐L.﹔Seo﹐D.S.﹔Kim﹐H.﹐J. Cryst. Growth 2001﹐229﹐428–432.
〔56〕Hoyer﹐P.﹐Langmuir 1996﹐12﹐1411–1413.
〔57〕Bando﹐Y.﹔Zhang﹐M.﹔Wada﹐K.﹐J. Mater. Sci. Lett. 2001﹐20﹐167–170.
〔58〕Imai﹐H.﹔Takei﹐Y.﹔Shimizu﹐K.﹔Matsuda﹐M.﹔Hirashima﹐H.﹐J. Mater.
Chem. 1999﹐9﹐2971–2972.
〔59〕Nakajima A.﹔Hashimoto K.﹔Wantanbe T.﹐Langmuir 2000﹐16﹐7044–7047.
〔60〕Wang R.﹔Sakai N.﹔Fujishima A.﹔Hashimoto K.﹔Wantanbe T.﹐J. Phys.
Chem. B. 1999﹐103﹐2188–2194.
〔61〕Nakajima A.﹔Hashimoto K.﹔Wantanbe T.﹐Langmuir 2000﹐16﹐7048–7050.
〔62〕Wantanbe T.﹔Nakajima A.﹔Wang R.﹐Thin Solid Films 1999﹐351﹐260–263.
〔63〕Deki S.﹔Aoi Y.﹔Asaoka Y.﹐J. Mater. Chem. 1997﹐7﹐733–736.
〔64〕Huang T.﹔Chang P.H.﹔Shie J.S.﹐J. Electrochem. Soc. 1996﹐143﹐2044–
2048.
〔65〕Deki S.﹔Aoi Y.﹔Yanagimoto H.﹔Ishii.K.﹔Akamaysu K.﹔Mizuhata M.﹔
Kajinami A.﹐J. Mater. Chem. 1996﹐6﹐1879–1882
〔66〕C. J Barbe﹔F. Arendse﹔P. Comte﹔M. Jirousek﹔V. Shklover F. Lenzmann
and M. Grätzel﹐J. Am. Ceram. Soc. 1997﹐80﹐3157.
〔67〕G.P. Smestad and M. Grätzel﹐J. Chem. Educ. 1998﹐75﹐752–756.
〔68〕J. Desilvestro﹔M. Grätzel﹔L. Kaven et al.﹐J. Am. Chem. Soc. 1985﹐
107﹐2988–2990.
〔69〕Eric W. McFarland and Jing Tang﹐Nature 2003﹐421﹐616-620.
〔70〕Takurou N.﹔Murakami Y.K.﹔Norimichi K﹔Tsutomu M.﹐J. Photochem. and
Photobio. A:Chem. 2003﹐164﹐187–191.
〔71〕Hongwei Han﹔Xingzhong Zhao﹔Jian Liu﹐J. Electrochem. Soc. 2005﹐152﹐
164–166.
〔72〕M. Zukalova﹔A. Zukal﹔L. Kavan﹔Mohammad K. Nazeeruddin﹔Paul Liska﹔
and M. Grätzel﹐Nano Letters 2005﹐5﹐1789–1792.
〔73〕C. J. Barbe﹔F. Arendse﹔P. Comte﹔M. Jirousek﹔F. Lenzmann﹔V.
Shklover﹔M. Gratzel﹐J. Am. Ceram. Soc. 1997﹐80﹐3157.
〔74〕N. G. Park﹔G. Schlichthorl﹔J. van de Lagemaat﹔H. M. Cheong﹔A.
Mascarenhas﹔A. J. Frank﹐J. Phys. Chem. B 1999﹐103﹐3308–3314.
〔75〕劉茂煌﹐奈米光電池﹐工業材料雜誌 2003﹐203期﹐93.
〔76〕Md.K.Nazeeruddin﹔S.M.Zakeeruddin﹔R.Humphry-Baker﹔M.Jirousek﹔P.Liska﹔
N.Vlachopoulos﹔V.Shklover﹔Christian-H.Fischer﹔M.Gratzel﹐Inog. Chem.
1999﹐38﹐6298–6305.
〔77〕Kim. S. Finnie﹔John R. Bartlett and James L. Woolfrey﹐Langmuir 1998﹐
14﹐2744–2749.
〔78〕C. Bauer﹔G. Boschloo﹔E. Mukhtar﹔A. Hagfeldt﹐J. Phys. Chem. B 2002﹐
106﹐12693–12704.
〔79〕Argazzi R. et al.﹐Inorg. Chem. 1994﹐33﹐5741–5749.
〔80〕Finnie K.﹔Bartlett J.﹔Woolfrey J.﹐Langmuir 1998﹐14﹐2744–2749.
〔81〕Nazeeruddin Md. et al.﹐Langmuir 2000﹐16﹐8525–8528.
〔82〕Murakoshi K et al.﹐J.Electroanal. Chem. 1995﹐396﹐27–34.
〔83〕Sayama K.﹔Sugihara H.﹔Arakawa H.﹐Chem. Mater. 1998﹐10﹐3825–3832.
〔84〕Md. K. Nazeeruddin﹔R. Humphry-Baker﹔P. Liska and M. Grätzel﹐J. Phys.
Chem. B 2003, 107, 8981–8987.
〔85〕C. Klein﹔Md. K. Nazeeruddin﹔D. Di Censo﹔P. Liska and M. Grätzel﹐
Inorg. Chem. 2004﹐43﹐4216–4226.
〔86〕U. Bach﹔D. Lupo﹔P. Comte﹔J. E. Moser﹔F.Weissortel﹔J. Salbeck﹔H.
Spreitzer and M. Grätzel﹐Nature 1998﹐395﹐583.
〔87〕B. O’Regan and D. T. Schwartz﹐Chem. Mater. 1998﹐10﹐1501-1509.
〔88〕B. O’Regan and D. T. Schwartz﹐J. Appl. Phys. 1996﹐80﹐4749–4754.
〔89〕B. O’Regan﹔D. T. Schwartz﹔S. M. Zakeeruddin and M. Gratzel﹐Adv.
Mater. 2000﹐12﹐1263–1267.
〔90〕M. Grätzel﹐Nature 2001﹐414﹐338.
〔91〕U. Bach﹔D. Lupo﹔J.E. Moser﹔F. Weissortel﹔J. Salbexk﹔H. Spreitzer
and M. Grätzel﹐Nature 1998﹐395﹐583-584.
〔92〕Hiroki Usui﹔Hiroshi Matsui﹔Nobuo Tanabe﹔Shozo Yanagida﹐J. Photochem.
Photobio.A: Chem. 2004﹐164﹐97-101.
〔93〕Dong-Won Kima﹔Yeon-Bok Jeong﹔Sang-Hern Kima﹔Dong-Yoon Lee and Jae-
Sung Song﹐Chem. Commun. 2002 2972.
〔94〕Ryoichi Komiya﹔Liyuan Han﹔Ryohsuke Yamanaka﹔Ashraful Islam and
Takehito Mitate﹐J. Photochem. Photobio.A: Chem. 2004﹐164﹐123-127.
〔95〕Liu Y.;Hagfeldt A.;Xiao X.;Lindquist S.﹐Sol. Energy Mater. Sol.
Cells 1998﹐55﹐267–281.
〔96〕Hara K. et al.﹐Sol. Energy Mater. Sol. Cells 2001﹐70﹐151–161.
〔97〕A. Hagfeldt and M. Grätzel﹐Acc. Chem. Res. 2000﹐33﹐269–277.
〔98〕M. Grätzel﹐Inorg. Chem. 2005﹐44﹐6841-6851.
〔99〕Mingdeng Wei﹔Yoshinari Konishi﹔Haoshen Zhou﹔Hideki Sugihara
and Hironori Arakawab﹐J. Electrochem. Soc. 2006﹐153﹐A1232.
〔100〕Powder Diffraction File:Search Manual﹐Hanawalt Method Inorganic﹐
compiled by the JCPDS:International Centre for Diffraction Data﹔in
cooperation with the American Ceramic Society﹐1991
〔101〕N.-G. Park﹔G. Schlichtho1rl﹔J. van de Lagemaat﹔H. M. Cheong﹔A.
Mascarenhas and A. J. Frank﹐J. Phys. Chem. B 1999﹐103﹐3308.
〔102〕Zhengrong R. Tian﹔James A. Voigt﹔Jun Liu﹔Bonnie Mckenzie and Huifang
X﹐J. Am. Chem. Soc. 2003﹐125﹐12384.
〔103〕Roger Mueller﹔Hendrik K. Kammler﹔Karsten Wegner and Sotiris E.
Pratsinis﹐Langmuir 2003﹐19﹐160.
〔104〕B. D. Yao﹔Y. F. Chan﹔X. Y. Zhang﹔W. F. Zhang﹔Z. Y. Yang, and N.
Wang﹐Appl. Phys. Lett. 1998﹐82﹐281.
〔105〕L. Kavan﹔M. Kalba﹔M. Zukalova﹔I. Exnar﹔V. Lorenzen﹔R. Nesper and
M. Grätzel﹐Chem.Mater. 2004﹐16﹐477.
〔106〕D. Bersani﹔P. P. Lottic and Xing-Zhao Ding﹐Appl. Phys. Lett.1998﹐72﹐
1.
〔107〕P. Madhu Kumar﹔S. Badrinarayanan﹔Murali Sastry﹐Thin Solid Films
2000﹐358 122.
〔108〕Guangming Liu﹔A.Klein, A.Thissen and W.Jaegermann Surface Science
2003﹐539 37.
〔109〕San Hua Lim﹔Jizhong Luo﹔Ziyi Zhong﹔Wei Ji﹔and Jianyi Lin﹐
Inorg.Chem . 2005﹐44﹐4124.
〔110〕Dmitry Bavykin﹔Valentin Parmon﹔Alexei Lapkina and Frank Walsh﹐Mater.
Chem. 2004﹐14﹐3370.
〔111〕Seigo Ito﹔Takayuki Kitamur﹔Yuji Wada and Shozo Yanagida﹐Sol. Energy
Mater. Sol. Cells 2003﹐76﹐3.
〔112〕G.K.R. Senadeera﹔T. Kitamura﹔Y. Wadab and S. Yanagida﹐J. Photochem.
and Photobio. A﹕Chem. 2004﹐164﹐61.
〔113〕S. Ngamsinlapasathian﹔S. Sakulkhaemaruethai﹔S. Pavasupree﹔A.
Kitiyanan, T. Sreethawong﹔Y. Suzuki and Susumu Yoshikawa﹐J.
Photochem. and Photobio. A﹕Chem. 2004﹐164﹐145.
〔114〕S.R. Scully﹔M.T. Lloyd﹔R. Herrera﹔E.P. Giannelis﹔G.G Malliaras﹐
Synthetic Metals 2004﹐144﹐291.
〔115〕A. Manuel Stephan and Dale Teeters﹐Electro. Acta 2003﹐48﹐2143.
〔116〕Y. Liu﹔A. Hagfeldt﹔X. R. Xiao and S. E. Lindquist﹐Sol.
Energy Mater. Sol. Cells 1998﹐55﹐267.
〔117〕A. Fillinger and B. A. Parkinson﹐J. Electrochem. Soc. 1999﹐146﹐4559.
〔118〕E. Hawlicka and R. Grabowski﹐Ber. Bunsenges. Phys. Chem. 1990﹐94﹐158.
〔119〕廖云汶﹐國立中央大學化學研究所碩士論文﹐2004.
〔120〕陳威錦﹐國立中山大學環境工程研究所碩士論文﹐2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top