跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/25 01:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳坤鴻
研究生(外文):Kung-Hung Wu
論文名稱:磁尾的磁場延伸和偶極化現象與磁副暴發生位置的距離關係之探討
論文名稱(外文):Dependence of Magnetic Stretching and Dipolarization on Distance Away From the Substorm Onset Location
指導教授:許志浤
指導教授(外文):Jih-Hong Shue
學位類別:碩士
校院名稱:國立中央大學
系所名稱:太空科學研究所
學門:自然科學學門
學類:天文及太空科學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:44
中文關鍵詞:偶極化磁副暴副磁暴極光
外文關鍵詞:substormauroral breakupauroradipolarizationGOESstretchingelevation angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
地球磁場偶極化(dipolarization)是一個讓磁尾的形狀由延伸現象(stretching)回到偶極場的一個過程。一般來說,磁場偶極化在磁副暴發展期啟動(substorm expansion onset)之後開始,接著極光會在對應於偶極場發展區域的電離層出現並且擴張。在這個研究裡我們進行一個有關於地球磁場的延伸現象以及偶極化在不同與磁副暴於地球表面位置(substorm onset location)之間距的研究。磁副暴的事件記錄表是由Polar Ultraviolet (UVI)極光影像圖中判斷得知。Polar UVI極光影像圖位於Lyman-Birge-Hopfield頻帶上(160-180 nm),用來觀測北半球夜側的極光強度。地球磁場的資料則是由Geostationary Operational Enviromental Satellite (GOES) 8號和9號兩個衛星所得到,並且我們利用此衛星資料計算地球磁場的傾斜角度。

經由資料分析後可以得到以下結論:(1)地球磁場在北向的行星際磁場(IMF)有比較大的偶極化現象,在南向IMF則比較小。不過,在南向IMF時比在北向IMF時有持續時間更長且強度更大的磁副暴復原期(substorm recovery phase)。因此,我們可以推論出地球磁場在磁副暴來臨時的偶極化現象與極光強度(auroral power)之間並沒有很好的關聯性;(2)持續延伸的地球磁場發生在GOES衛星對應在磁副暴於地表延伸位置(substorm onset location)的西邊;持續偶極化的地球磁場則發生在substorm onset location的東邊。由這個結果,我們可以推測磁場傾斜角在東西兩邊有東西不對稱(west-east asymmetry)的現象發生;(3)最大的偶極化發生在onset location東邊一小時當地時間(local time)的位置。
Magnetic dipolarization is a process that the configuration of the magntotail changes from a tail-like to a dipole-like orientation. It is generally believed that the magnetotail starts to dipolarize at the substorm expansion onset; subsequently, the dipolarization region expands and nightside aurora develops. In this study we pursue a study of dependence of magnetic stretching and dipolarization on distance away from the substorm onset location for a list of substorms identified from Polar Ultraviolet (UVI) auroral images. Magnetic field data from Geostationary Operational Enviromental Satellite (GOES) 8 and 9 are used to calculate elevation angles of the Earth’s magnetic field, while Polar UVI images in the Lyman-Birge-Hopfield band (160-180 nm) are used to estimate the Northern Hemispheric nightside auroral power. It is found that: (1) The magnetic field is more dipolarized for northward IMF than that for southward IMF. In addition, events for southward IMF have a longer recovery phase and stronger intensity than those for northward IMF. Therefore, it implies that the dipolarization and auroral power do not have a good relationship during the substorm; (2) The sustained stretching occurred when the GOES footpoint was located at westward of the onset location and the sustained dipolarization occurred when the GOES footpoint was located at eastward of the onset location and out of the SCW region. This result indicates that there is a west-east asymmetry in elevation angle; (3) The largest dipolarization occurred at 1 hour distance eastward of the onset location.
摘要..........................................................................................................Ⅰ
Abstract.....................................................................................................Ⅲ
致謝..........................................................................................................Ⅴ
Acknowledgements..................................................................................Ⅶ
Table of Contents......................................................................................Ⅷ
List of Figures...........................................................................................Ⅹ
Chapter 1 Introduction..............................................................................01
Chapter 2 Data Preparation.......................................................................09
2.1 Calculating the Integrated Auroral Power and
Determining the Substorm Onset.................................................09
2.2 Calculating the Elevation Angle..................................................13
2.3 Estimate for Corresponding of Interplanetary Magnetic Field....14
2.4 Superposed Epoch Analysis.........................................................16
Chapter 3 Results and Discussions...........................................................18
3.1 Results of All Events....................................................................18
3.2 Events Separated by Northward and Southward IMF..................20
3.3 Events Binned By Magnetic Local Time (MLT)
Difference During the Substorm Local Time and
GOES Footpoint (DLTGF)............................................................23
3.4 Changes of Elevation Angle at Various DLTGF...........................24
3.5 Changes of Elevation Angle During Substorms
at Finer DLTGF.............................................................................27
3.6 Changes of Elevation Angle at Different DLTGF
During Substorms........................................................................29
Chapter 4 Conclusions..............................................................................30
References................................................................................................32
Appendix Onset Time List........................................................................35
Akasofu, S.-I, The development of the auroral substorm. Planet. Space Sci., 12, 273, 1964.

Atkinson, G., An approximate flow equation for geomagnetic flux tubes and its application to polar substorms, J. Geophys. Res., 72, 5373-5382, 1967.

Baker, K. B., and S. Wing, A new coordinate system for conjugate studies at high latitudes, J. Geophys. Res., 94, 9139, 1989.

Bonnevier, B. R., and G. Rostoker, A three-dimensional model current system for polar magnetic substorms, J. Geophys. Res., 75, 107, 1970.

Brittnacher, M., R. Elsen, G. Parks, L. Chen, G. Germany, and J. Spann, A dayside auroral energy deposition case study using the Polar Ultraviolet Imager, Geophys. Res. Lett., 24, 991, 1997.

Cumming, W. D., J. N. Barfield, and P. J. Coleman, Magnetospheric substorms observed at synchronous orbit, J. Geophys. Res., 73, 6687, 1968.

Fairfield, D. H., and N. F. Ness, Configuration of the geomagnetic tail during substorms, J. Geophys. Res., 75, 7032, 1970.

Germany, G. A., M. R. Torr, D. G. Torr, and P. G. Richards, Use of FUV auroral emissions as diagnostic indicators, J. Geophys. Res., 99, 383, 1994.

Kaufmann, R. L., Substorm currents: Growth phase and onset, J. Geophys. Res., 92, 7471, 1987.

Kennel, C., The Kiruna conjecture: The strong version, in Proceedings of the International Conference on Substorms (ICS-1), Eur. Space Agency Spec. Publ., ESA SP-335, 599, 1992.

Kokubun, S., and R. L. McPherron, Substorm signatures at synchronous altitude, J. Geophys. Res., 86, 11,265, 1981.

Lepping, R. P., et al., The WIND magnetic field investigation, Space Sci. Rev., 71, 207, 1995

Liou, K., P. T. Newell, C.-I. Meng, M. Brittnacher, and G. Parks, Characteristics of the solar wind controlled auroral emissions, J. Geophys. Res., 103, 17,543, 1998.

Liou, K., C.-I. Meng, A. T. Y. Lui, P. T. Newell, M. Brittnacher, G. Parks,G. D. Reeves, R. R. Anderson, and K. Yumoto, On relative timing in substorm onset signatures, J. Geophys. Res., 104, 22,807, 1999.

Liou, K., C.-I. Meng, A. T. Y. Lui, P. T. Newell, and R. R. Anderson, Auroral kilometric radiation (AKR) at substorm onset, J. Geophys. Res., 105, 25,325, 2000a.

Liou, K., C.-I. Meng, P. T. Newell, K. Takahashi, S.-I. Ohtani, A. T. Y. Lui, M. Brittnacher, and G. Parks, Evaluation of low-latitude Pi2 pulsations as indicators of substorm onset using Polar ultraviolet imagery, J. Geophys. Res., 105, 2495, 2000b.

Liou, K., C.-I. Meng, P. T. Newell, A. T. Y. Lui, G. Reeves, and R. Belian, Particle injections with auroral expansions, J. Geophys. Res., 106, 5873, 2001.

Liou, K., C.-I. Meng, A. T. Y. Lui, P. T. Newell, and S. Wing, Magnetic dipolarization with substorm expansion onset, J. Geophys. Res., 107, 1131, 2002

Lopez, R. E., D. G. Sibeck, A. T. Y. Lui, K. Takahashi, R. W. McEntire, T. A. Potemra, and D. Klumper, Substorm variations in the magnitude of the magnetic field, J. Geophys. Res., 103, 14,444, 1998.

Lui, A. T. Y., A synthesis of magnetospheric substorm models, J. Geophys. Res., 96, 1849, 1991.

McPherron, R.L. Growth phase of magnetospheric substorms. J Geophys. Res., 75, 657, 1970.

McPherron, R. L., C. T. Russell, and M. P. Aubry, Satellite studies of magnetospheric substorms on August 15, 1968, 9, Phenomenological model for substorms, J. Geophys. Res., 78, 3131, 1973.


Meng, C.-I. and K. Liou, Substorm timing and timescales: a new aspect, Space Sci. Rev., 113, 41-75, 2004.

Nagai, T., Observed magnetic substorm signatures at synchronous altitude, J. Geophys. Res., 87, 4405, 1982.

Rostoker, G., Current flow in the magnetosphere during magnetospheric substorms, J. Geophys. Res., 79, 1994, 1974.

Sauvaud, J.-A., and J. R. Winckler, Dynamics of plasma, energetic particles, and fields near synchronous orbit in the nighttime sector during magnetospheric substorms, J. Geophys. Res., 85, 2043, 1980.

Shue, J.-H., S. Ohtani, P. T. Newell, K. Liou, and C.-I. Meng, Quantitative relationships between plasma sheet flows and nightside auroral power, J. Geophys. Res., 108, 1231, 2003

Strickland, D. J., R. E. Daniel Jr., J. R. Jasperse, and B. Basu, Transport-theoretic model for the electron-proton-hydrogen atom aurora, 2, Model results, J. Geophys. Res., 98, 21,533, 1993.

Torr, M. R., et al., A far ultraviolet imager for the international solar-terrestrial physics mission, Space Sci. Rev., 71, 329, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top