跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 14:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉宜諺
研究生(外文):Yi-Yen Liu
論文名稱:邊界條件及滲漏補注對地下水流分數維度之影響
論文名稱(外文):The influence of boundary conditions and leakage on the fractional groundwater flow dimensionality
指導教授:陳家洵陳家洵引用關係
指導教授(外文):Chia-Shyun Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球物理研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:62
中文關鍵詞:地下水流分數維度邊界條件滲漏補注壓力微分標準曲線匹配
外文關鍵詞:boundary conditionsleakagepressure derivativetype curves fittingfractional dimension
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:1
裂隙含水層普遍存在地表之下較深處,當進行水力實驗以分析裂隙含水層水文地質狀況時,需要選用合適之水井水力學模式。廣義徑向流模式以地下水流分數維度描述地下水流經截面積隨距離之變化,為分析裂隙含水層水文地質特徵常用模式之ㄧ。壓力微分大時間斜率可用以分析廣義徑向流模式之地下水流維度,但用以分析受定水頭邊界、不透水邊界及滲漏補注洩降資料之地下水流維度並非完全正確。本研究以標準曲線匹配方式,分析徑向流在單一定水頭邊界、單一不透水邊界及滲漏補注之地下水流維度,並與壓力微分大時間斜率分析結果比較,證實壓力微分大時間斜率不適用於分析非碎型幾何模式之地下水流維度。此外,進一步分析二互相垂直不透水邊界、互相垂直定水頭邊界、二互相垂直之不透水及定水頭邊界洩降,發現二互相垂直不透水邊界洩降變化完全不符合廣義徑向流模式,而其他不同水文地質邊界與滲漏補注洩降資料,所得地下水流維度非唯一,水力傳導係數及比儲水係數值隨地下水流維度增加而減小,且均不等於真實值,顯示邊界條件與滲漏補注無法由地下水流分數維度吸收。加入邊界條件時,已不滿足廣義徑向流模式需保持徑向流之特性。因此邊界條件與滲漏補注以廣義徑向流模式代表並無意義。
The problem that arises when analyzing data from a hydraulic test is that of choosing an appropriate geometry for the fractured system into which flow occurs. Generalized radial flow model which considers fractional dimensions is a common method to analyze the hydraulic test data in fractured aquifer. The late-time slope of the pressure derivative can aid to determine the flow dimensions of generalized radial flow model, but it is not totally correct to determine the flow dimensions of the hydrogeologic conditions, including constant head boundary, impermeable boundary, and leakage. We analyze the flow dimensions of the radial flow with a linear constant head boundary, a linear impermeable boundary, and leakage by type curves fitting, and compare with the analyzing results by the late-time slope of the pressure derivative. According to the comparisons, we prove that the late-time slope of the pressure is not suitable to determine the flow dimensions of nonfractal model. Moreover, we also analyze the drawdown data of radial flow with two perpendicular constant head boundaries, two perpendicular impermeable boundaries, and a constant head boundary perpendicular to an impermeable boundary. The drawdown date of two perpendicular impermeable boundaries can not match generalized radial flow model. The flow dimensions of other boundary conditions and leakage are not unique, and the hydraulic conductivity and the specific storage do not equal to hypothetical values. The boundary conditions and leakage can not be substituted by variable flow dimensions.
目錄 i
圖目錄 iii
表目錄 vi
符號說明 vii
第一章 背景與目的 1
1.1 前言 1
1.2 研究目的 9
第二章 水文地質邊界及滲漏洩降資料建立 10
2.1 廣義徑向流理論模式介紹 10
2.1.1 薄壁效應及井管儲蓄效應 10
2.1.2 假設及數學模式 11
2.1.3 K、Ss、Cw及Sk之參數敏感度分析 13
2.2 水文地質邊界 15
2.2.1 單一定水頭邊界 15
2.2.2 單一不透水邊界 17
2.2.3 二互相垂直之水文地質邊界 18
2.3 滲漏補注 22
第三章 資料分析與結果 26
3.1 廣義徑向流模式標準曲線分析方式 26
3.1.1 曲線匹配與參數推估過程 26
3.2 壓力微分分析方式 29
3.3 廣義徑向流模式標準曲線分析結果 30
3.3.1 單一定水頭邊界洩降資料分析結果 30
3.3.2 參數推估結果驗證 36
3.3.3單一不透水邊界洩降資料分析結果 37
3.3.4 二互相垂直水文地質邊界洩降資料分析結果 40
3.3.5 滲漏洩降資料分析結果 48
3.4 案例討論 48
第四章 結論 53
參考文獻 54
附錄一 壓力微分曲線大時間斜率與GRF模式關係驗證 58
附錄二 GRF數學模式無因次化及求解過程 59
Acuna, J. A., and Y. C. Yortsos, Application of fractal geometry to the study of networks of fractures and their pressure transient, Water Resour. Res., 31(3), 527-540, 1995.
Agarwal, R. G., R.Al-Hussainy, and H. J. Ramey, Jr., An investigation of wellbore storage and skin effect in unsteady liquid flow, 1, Analytical treatment, Trans. Soc. Pet. Eng. AIME, 249, 279-290, 1970.
Barenblatt, G. I., Yu. P. Zheltov, and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, Prikl. Mat. Mekh, 24(5), 852-864, 1960.
Barker, J. A., A generalized radial flow model for hydraulic tests in fractured rock, Water Resour. Res., 24(10), 1796-1804, 1988.
Boulton, N. S., and T. D. Streltsova, Unsteady flow to a pumped well in a fissured aquifer with a free surface level maintained constant, Water Resour. Res., 14, 527-532, 1978.
Brodsky, E. E., E. Roeloffs, D. Woodcock, I. Gall, and M. Manga, A mechanism for sustained groundwater pressure changes induced by distant earthquakes, J. Geophy. Res., 108(B8), 2390, doi: 10.1029/2002JB002321, 2003.
Butler, J. J., Jr., Pumping tests in nonuiform aquifers – the radially symmetric case, J. Hydrol., 101, 15-30, 1988.
Chang, C. C., and C. S. Chen, An integral transform approach for a mixed boundary problem involving a flow partially penetrating well with infinitesimal well skin, Water Resour. Res., 38(6), doi: 10.1029/2001WR001091, 2002.
Chen, C. S., and C. C. Chang, Use of cumulative volume of constant-head injection test to estimate aquifer parameters with skin effects: field experiment and data analysis, Water Resour. Res., 38(5), doi: 10.1029/2001WR000300, 2002.
Chu, W. C., J. Garcia-Rivera, and R. Raghavan, Analysis of interference test data influenced by wellbore storage and skin at the flowing well, J. Pet. Tech., 171-178, 1980.
Le Borgne, T., O. Bour, J. R. de Dreuzy, P. Davy, and F. Touchard, Equivalent mean flow model foe fractured aquifers: Insights from a pumping tests scaling interpretation, Water Resour. Res., 40, W03512, doi: 10.1029/2003WR002436, 2004.
de Hoog, F. R., J. H. Knight, and A. N. Stokes, An improved method for numerical inversion of Laplace transforms, SIAM Journal of Scence and Statistics Computation., 3(3), 357-366, 1982.
Freeze, A. R., and J. A. Cherry, Groundwater, Prntice Hall, Inc., 604pp, 1979.
Hamm, S. Y., and P. Bidaux, Dual-porosity fractal models for transient flow analysis in fissured rock, Water Resour. Res., 32(9), 2733-2745, 1996.
Hantush, M. S., and C. E. Jacob, Nonsteady radial flow in an infinite leaky aquifer, Eos Trans. AGU, 36(1), 95-100, 1955.
Hyder Z., J. J. Butler Jr., C. D. McElwee, and W. Z. Liu,Slug tests in partially penetrating wells, Water Resour. Res., 30(11),2945-2957, 1994.
Kazemi, H. P., Pressure transient analysis of naturally fractured reservoirs with uniform fracture distributions, Trans. Soc. Pet. Eng., 246, 451-462, 1969.
Kuusela-Lahtinen, A., A. Niemi, and A. Luukkonen, Flow dimension as an indicator of hydraulic behavior in site characterization of fractured rock, Ground Water, 41(3), 333-341, 2003.
Lai, R. Y., and C. Su, Nonsteady flow to a large well in a leaky aquifer, J. Hydrol., 22, 333-345, 1974.
Marechal, J. C., B. Dewandel, K. Subrahmanyam, Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer, Water Resour. Res., 40, W11508, doi: 1029/2004WR003137, 2004.
Mishra, S., Methods for analyzing single- and multi-well hydraulic test data, in Grimsel Test Site: Interpretatin of Crosshole Hydraulic Tests and a Pilot Fluid Logging Test for Selected Boreholes Within the BK site, edited by S. Vomvoris and B. Frieg, NAGRA Tech. Rep. NTB 91-09, Natl. Coop. for the Disposal of Radioactive Waste, Wettingen, Switzerland, 1992.
Moench,A. F., Transient flow to a large-diameter well in an aquifer with storative semiconfining layers, Water Resour. Res., 21(8), 1121-1131,1985.
Ramey, H. J., Jr., and R. G. Agarwal, Annulus unloading rates as influenced by wellbore storage and skin effect, Trans. Soc. Pet. Eng. AIME, 253, 453-462, 1972.
Sneddon, I. N., The Use of Integral Transforms, 540pp., McGraw-Hill, New York, 1974.
Spane, F. A., Jr., and S. K. Wurstner, DERIV: A computer program for calculating pressure derivatives for use in hydraulic test analysis, Ground Water, 31(5), 814-822, 1993.
Streltsova, T. D., Well Testing in Heterogeneous Formations, An Exxon Monograph, John Wiley and Sons, N.Y., 413pp, 1988.
van Everdingen, A. F., The skin effect and its influence on the productive capacity of a well, Trans. Am. Inst. Min. Metall. Pet. Eng., 198, 171-176, 1953.
Walker, D. D., and R. M. Roberts, Flow dimensions corresponding to hydrogeologic conditions, Water Resour. Res., 39(12), 1349, doi:10.1029/2002WR001511, 2003.
Warren, J. E., and P. J. Root, The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J., 3, 245-255, 1963.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top