跳到主要內容

臺灣博碩士論文加值系統

(100.26.196.222) 您好!臺灣時間:2024/03/02 22:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂維瑾
研究生(外文):Wei-Chin Lu
論文名稱:地震斷層作用後的流體滲透作用:檢視TCDPA井車籠埔斷層斷層岩的化學及礦物組成
論文名稱(外文):Fluid infiltration after seismic faulting: examining chemical and mineralogical composition of the fault rocks in the drilling cores form TCDP well hole-A of the Chelungpu fault
指導教授:陳維民陳維民引用關係
指導教授(外文):Wei-min Donald Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:地球物理研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:80
中文關鍵詞:流體滲透作用深鑽計畫車籠埔斷層
外文關鍵詞:TCDPChelungpu faultfluid infiltrationfluid-rock reaction in fault zone
相關次數:
  • 被引用被引用:1
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
流體是影響斷層破裂帶演化非常重要的因素。本研究以車籠埔斷層TCDP-A井岩心為對象,採用X光粉末繞射分析、X光螢光分析、燒失量及碳氫分析、密度測定等定性定量方法來鑑定斷層帶的斷層岩與圍岩的化學成分及礦物組成差異,並配合岩象觀察,比較斷層岩與圍岩間化學成分與礦物相轉換的情形,模擬斷層帶中可能產生的化學反應,探討流體在重複發生的地震事件之中所扮演的角色。 由XRD一般礦物分析及岩象觀察的結果,得知TCDP-A井的岩心樣本內主要的組成礦物為石英、長石、雲母、方解石等。透過偏光顯微鏡觀察樣本內微構造的發展,可發現破裂帶中石英顆粒較圍岩中破碎。而且破裂帶中裂隙與細脈發達,這些細脈主要是由一些順向排列的絹雲母及其他更細小的黏土礦物所組成。 本研究之黏土礦物半定量分析結果指出,黏土礦物相對含量以伊萊石最多,可達50%到60%;綠泥石、高嶺石居次,相對含量在10%到30%之區間內變動且兩者的含量變化呈現相反趨勢。 E斷層帶壓碎岩內主要的黏土礦物礦物相轉換以高嶺石-蒙脫石及綠泥石-蒙脫石為主,同時有部分伊萊石-蒙脫石轉換。伊萊石崩解成蒙脫石的反應反映出此壓碎岩可能處於降溫且富水的環境,顯示本研究分析到的壓碎岩樣本極可能屬於活動時期較久遠的老斷層,而非應當呈現出升溫脫水反應的新生斷層。 XRF與等值線圖分析結果則可知斷層帶之元素流動情況,並推測出斷層帶曾經歷碳酸鹽類的溶解、長石崩解成黏土礦物以及黏土礦物間的互相轉換等反應,這些礦物相轉變是造成斷層帶化學元素流動的有力原因,也是斷層帶曾經過流體作用的證據。等值線圖分析得出的部份斷層帶體積膨脹的結果以及礦物相變化、現場地下水酸鹼度測試結果都暗示,除酸性流體作用外,斷層帶也經歷過鹼性流體的作用。
In order to understand the chemical and mineralogical variations between the historical fault zone and the fault zone caused by the Chi-Chi earthquake, we use following methods to exam undamaged rocks and fault rocks in this study: X-ray fluorescence analysis (XRF), X-ray diffraction analysis (XRD), LOI and CH measurement, density measurement, petrographic observation and Isocon method. From XRD and petrographic data, we found mainly mineral composition of our samples are quartz, feldspar, calcite, and clay minerals. Results of semi-quantitative XRD analysis of clay minerals show that kaolinite and chlorite usually show opposite variation trend in the fault zone. Clay minerals transformation reactions in the cataclasite of fault zone E are mainly kaolinite to mont., chlorite to mont. and a part of illite to mont.. Illite-mont. reaction of the cataclasite of fault zone E and calcite and quartz veins in the cataclasite shows that this part may be an old fault zone. By using isocon method, we found that fault zones display volume decrease except the cataclasite of fault zone E and some damaged rocks. These volume decreases may be caused by feldspar breakdowns to clay minerals. Volume gain of cataclasite of fault zone E and some damaged rocks may caused by increase of quartz or calcite. Increase of quartz or calcite, increase of chlorite (decrease of kaolinite), clay minerals transform to montmorillonite and groundwater measurement result all imply that there might be alkaline fluid infiltration in fault zones. Fluid infiltration can cause mineral transformations. All mineral transformations in our study could be the evidence of fluid infiltration.
目 錄 摘要.......................................................................................................... i
誌謝.......................................................................................................... iii
目錄.......................................................................................................... iv
圖目錄...................................................................................................... vii
表目錄...................................................................................................... ix
圖版目錄..................................................................................................x
附表目錄..................................................................................................xii
第一章 緒論............................................................................................1
1.1 研究動機與目的........................................................................1
1.2 研究區域地質背景....................................................................1
1.2-1 台中地區地質背景..............................................................2
1.2-2 車籠埔斷層..........................................................................3
第二章 前人研究....................................................................................6
2.1 地球化學分析................................................................................6
2.2 斷層岩與斷層機制........................................................................6
2.3 車籠埔斷層淺鑽計劃相關研究....................................................8
第三章 研究方法................................................................11
3.1 採樣工作....................................................................................11
3.2 室內分析....................................................................................11
3.2-1 岩象觀察..............................................................11
3.2-2 全岩化學分析.....................................................12
3.2-2-1X光螢光分析.......................................................12
3.2-2-2燒失量及碳氫測定..............................................12
3.2-2-3等值線圖…........................................................12
3.2-3 X光粉末繞射分析................................................14
3.2-4 密度測定...........................................................14
第四章 研究成果....................................................................................18
4.1 岩象觀察……………................................................................18
4.2 X光粉末繞射分析結果..................................................................20
4.2-1 一般礦物分析結果.............................................................20
4.2-2 黏土礦物分析結果.............................................................21
4.3 全岩化學分析結果........................................................................23
4.3-1 元素含量變動與岩性比對.................................................23
4.3-2 等值線圖…………………................................................25
第五章 討論............................................................................................49
5-1 圍岩均質性…………....................................................................49
5-2 化學組成與礦物相變化.........................................................49
第六章 結論............................................................................................57
參考文獻..................................................................................................59
圖版..........................................................................................................63
中文部分:
李錦發(2000)。東勢圖幅說明書,經濟部中央地質調查所,共117頁。
李寄嵎、蔡榮浩、何孝�琚B楊燦堯、鍾孫霖、陳正宏(1997)。應用X光
螢光分析儀從事岩石樣品之定量分析(I)主要元素,中國地質學
會八十六年年會暨學術研討會論文摘要,第418-420 頁。
衣德成(2004)。車籠埔斷層帶組構特性與膨潤石-伊利石礦物相轉變之
研究,成功大學地球科學研究所碩士論文,共106 頁。
何春蓀(1986)。台灣地質概論─台灣地質圖說明書。經濟部中央地質調
查所,共164 頁。
林泗濱(1986)。台東縣海岸山脈之黏土礦床,地質,7卷,2期,第35-53
頁。
林朝棨(1957)。臺灣地形。臺灣省文獻委員會,臺灣省通志稿,卷一,
第一冊,共423頁。
洪清琳(1996)。斷層泥力學性質與微組構觀察之研究,中央大學應用地
質研究所碩士論文,共168頁。
翁勳政、張寶堂、劉進金(1996)。台中盆地潛在地質災害之初步探討。
「臺灣之第四紀」第六次研討會暨「台北盆地地下地質與工程環
境綜合調查研究」成果發表會論文集,第220-223頁。
陳勉銘、何信昌(2000)。九二一集集地震斷層與車籠埔斷層之關連。經
濟部中央地質調查所特刊第十二號:九二一集集大地震專輯,第
113–138 頁。
許麗芬(1993)。斷層泥之微組構分析,中央大學應用地質研究所碩士論
文,共105頁。
廖卿妃(2003)。車籠埔斷層斷層岩之變形作用與黏土礦物分析,中央大
學應用地質研究所碩士論文,共132頁。
盧崇賓(2004)。地震斷層作用後的流體滲透作用:檢視車籠埔斷層南投井
斷層岩之化學及礦物組成。國立中央大學應用地質研究所碩士
論文,共100頁。
外文部分:
田中秀�唌B物質地質�堌甭褗蒯�(1998)。地表ろヘ震源深度ズ至ペ�宎h
�X物質ソ物質分布れプヂ物質�B支ソ�埽�,月刊地球�A外,No. 20,
第150-155頁。
Chen, W. D., Lu, C. B., Tanaka, H., Huang, H. J., Lee, H. Y., and Wang, C.
Y., 2006. Fluid infiltration after seismic faulting: examining chemical
and mineralogical composition of the fault rocks in the drilling cores
of the Chelungpu fault. Tectonophysics, submitted.
Faure G., 1991. Mineral stability diagrams. Principles and Applications of
Inorganic Geochemistry, Ch.14, 250-281.
Faure G., 1991. Clay minerals. Principles and Applications of Inorganic
Geochemistry, Ch.15, 282-307.
Floyd, P.A. and Winchester, J.A., 1975. Magma type and tectonic setting
discrimination using immobile elements. Earth and Planetary Science
Letters, vol.27, 211-218.
Grant, J. A., 1986. The isocon diagram-a simple solution to Gresens'
equation for metasomatic alteration. Economic geology, Vol.81,
1976-1982.
Goddard, J. and Evans, J. P., 1995. Chemical changes and fluid-rock
interaction in faults of crystalline thrust sheets, northwestern
Wyoming, U.S.A. Journal of Structural Geology, Vol.17, 533-547.
Higgins, M. W., 1971. Cataclastic rocks. U.S. Geological Survey
professional paper 687, 1-97.
Huang, S. T., Wu, J. C., Hung, J. H. and Tanaka, H., 2002. Studies of
sedimentary facies, stratigraphy and deformation structures of the
Chelungpu Fault zone on cores from drilled wells in Fengyuan and
Nantou, central Taiwan. TAO, Vol.13, No. 3, 253-278
Johns, W. D., Grim, R. E. and Bradley, W. F., 1954. Quantitative
estimations of clay minerals by diffraction methods. Journal of
Sedimentary Petrology, Vol.24, No. 4, 242-251.
Lee, P. J., 1977. Rate of the Early Pleistocene uplift in Taiwan. Memoir of
the geological society of China, No 2, 71-76.
Otsuki, K. and Monzawa N., 2001. Constrasting fault rocks from two
boreholes penetrating Chelung-pu Fault, Taiwan. ICDP Workshop on
Drilling the Chelungpu Fault, Taiwan 2001, 90-92.
Sibson, R.H., 1977. Fault rocks and fault mechanisms. Journal of the
Geological Society of London, Vol. 133, 191-213.
Seno, T., 1977. The instantaneous rotation vector of the Philippine Sea
plate relative to the Eurasian plate. Tectonophysics, Vol. 42, 209-226.
Shea, W. T., and Kronenberg, A. K., 1992. Rheology and deformation
mechanisms of an isotropic mica schist. Journal of Geophysical
Research, Vol. 97, 15201-15237.
Shea, W. T., and Kronenberg, A. K., 1993. Strength and anisotropy of
foliated rocks with varied mica contents. Journal of Structural
Geology, Vol. 15, 1097-1121.
Scholz, C. H., 2002. Fault rocks and structures. The Mechanics of
Earthquakes and Faulting, Ch.3.3, 135-145.
Tanaka, H., 1992. Cataclastic lineations. Journal of Structural Geology,
Vol. 14, No. 10, 1239-1252.
Tanaka, H., Fujimoto, K., Ohtani, T. and Ito, H., 2001. Structural and
chemical characterization of shear zones in the freshly activated
Nohima fault, Awaji Island, southwest Japan. Journal of Geophysical
Research, Vol. 106, No. B5, 8789-8810.
Vrolijk, P., Pluijm, B. A. van der, 1999. Clay gouge. Journal of Structural
Geology, Vol. 21, 1039-1048.
Wintsch, R.P., Christoffersen, R., Kronenberg, A. K., 1995. Fluid-rock
reaction weakening of fault zones. Journal of Geophysical Research,
vol.100, 13021-13032.
Wang, C. Y., Li, C. L., Su, F. C., Leu, M. T., Wu, M. S., Lai, S. H., Chern,
C. C., 2002. Structural Mapping of the 1999 Chi-Chi Earthquake Fault,
Taiwan by Seismic Reflection Methods. TAO, Vol.13, No.3, 211-226.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top