跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/02 23:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾孟璋
研究生(外文):Meng-Zhang Zhong
論文名稱:以光學顯微鏡及原子力顯微鏡於大氣中觀測及操控奈米碳管之研究
論文名稱(外文):Observations and Manipulations of Carbon Nanotubes in Air by Optical Microscope and Atomic Force Microscope
指導教授:粘正勳
指導教授(外文):C.-H. Nien
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:91
中文關鍵詞:操控奈米碳管光學顯微鏡原子力顯微鏡
外文關鍵詞:CNTOMAFMmanipulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管在1991年被發現之後,由於其獨特的物理及電學性質,成為一新興的奈米材料。然而目前能夠看到碳管外觀形貌的工具,不外乎是各種先進的顯微技術,如掃描式探針顯微鏡、掃描式電子顯微鏡、穿透式電子顯微鏡等等,而這種顯微技術通常有著諸多限制以及其不便性。因此,對於能夠快速觀測到奈米碳管以鑑別出實驗的結果,也是個相當重要且實用的議題。
在本文中,我們嘗試利用傳統的光學顯微鏡來觀察奈米碳管,並加以簡單的定位之後,便能夠較為準確且省時地使用原子力顯微鏡找到碳管的蹤跡,以利進一步的量測或操控。
在過程當中,發現到一些有趣的現象:碳管的光學影像會隨著樣品放置的時間不同,而有碳管從看不見,接著慢慢浮現,而後又消失的情形。這個現象,我們假設是表面自然形成的水膜所引起的。更進一步的,我們嘗試改變溼度這項參數,觀察影像的變化。我們發現,溼度的高低,也會影響碳管的光學影像。
對於碳管的周圍似乎較容易吸收一層水膜的現象,我們嘗試著用原子力顯微鏡在矽基板上的局部氧化微影術來做間接的測試。從原子力顯微鏡的初步觀察中可發現,氧化矽的條紋在低濕度時似乎是從底下將碳管抬起;而較高濕度時,氧化矽的條紋是跨越過碳管上方。
另外在碳管的操控方面,利用在空間中介電泳的方式將碳管沾附到針尖上,形成尖端非常細尖的碳管探針。而在平面上,使用原子力顯微技術也能夠達成在平面上搬運或切斷碳管之目的。這兩種操控碳管的方式,對於製作奈米元件,預期將有不錯的發展空間。
我們對於這些現象的觀察與理解,期望對之後的碳管研究,甚至對於其他一維奈米線的研究,能夠有所幫助。
Since it was discovered in 1991, carbon nanotube (CNT) has become a rising nano-material because of its unique physical and electrical properties. We can use several kinds of advanced microscopes such as scanning probe microscope (SPM), scanning electron microscope (SEM), and transmission electron microscope (TEM) to observe CNTs. However, these microscopes often have a lot of constraints and they are often labor-demanding. Therefore, it is a very important and practical topic to observe CNTs in a more convenient fashion.
In this article, we try to observe CNTs by using traditional optical microscope (OM), and to locate the position at the same time. Thus we can find out CNTs rapidly by atomic force microscope (AFM), and it is helpful for further measuring and manipulation.
In the process, we find some interesting phenomena: The OM image of CNTs can’t be observed at first, and then appears as time goes, and finally disappears again. We propose that this phenomenon is caused by the liquid film on the surface. Further, we find the relative humidity (RH) will also influence the CNTs’ OM image under the same mechanism.
We try to practice AFM lithography on CNTs / Si to test the effect of H2O film indirectly. At low RH, the oxide stripes look like to be underneath the CNTs. However, at high RH, the stripes look like to stride across the CNTs.
Besides, we made some attempt on CNT manipulation. In a 3-D version, CNTs can be attached on the tungsten tip by dielectrophoresis. In a 2-D version, CNTs can also be moved or cut using an AFM tip. These manipulation methods are expected useful for nano device.
We hope that the discovery and our understanding of these phenomena can be useful for future research on CNTs, and other 1-D nano wire as well.
第一章 研究背景 1
第二章 原理說明 5
2-1 裁切、純化及過濾奈米碳管........................5
2-1-1 利用酸液及超音波震盪剪裁奈米碳管的原理........6
2-1-2 利用離心機分離碳管與其他雜質的原理............7
2-2 表面張力對液滴中碳管的作用......................9
2-2-1 表面張力的原理................................9
2-2-2 利用表面張力排列及篩選奈米碳管................11
2-3 成核作用的原理及其對表面液滴的影響..............13
2-4 碳管上所覆蓋的水膜對於光學觀測視角所造成的影響..17
2-5 原子力顯微鏡的相關原理..........................21
2-5-1 原子力顯微鏡的工作原理........................21
2-5-2 原子力顯微鏡各種操作的模式....................24
2-5-3 利用原子力顯微鏡操控奈米碳管..................26
2-5-4 利用原子力顯微鏡做局部氧化微影術的原理........29
2-6 利用介電泳將奈米碳管沾附到鎢針針尖上的原理......31
第三章 實驗流程及裝置 34
3-1 製備碳管懸浮液樣品..............................36
3-1-1 碳管來源......................................36
3-1-2 剪裁及純化處理碳管............................37
3-1-3 離心機操作以過濾雜質..........................38
3-2 光學顯微鏡對碳管在基板上的觀察..................39
3-2-1 含有奈米碳管的懸浮液經過長時間自然乾燥的實驗..39
3-2-2 控制溼度的實驗 ...............................40
3-3 有關原子力顯微鏡的實驗..........................41
3-3-1 原子力顯微鏡操控碳管..........................41
3-3-2 原子力顯微鏡在矽基板上對碳管做局部氧化微影....42
3-4 利用介電泳將奈米碳管沾附到鎢針的針尖上..........44
第四章 實驗結果與討論 45
4-1 剪裁處理及離心過濾奈米碳管......................46
4-2 光學顯微鏡對碳管在基板上的觀察..................50
4-2-1 光學顯微鏡下所觀察到的特殊現象................50
4-2-2 利用表面張力排列及分離奈米碳管的結果..........56
4-2-3 控制溼度的結果................................61
4-3 有關原子力顯微鏡的實驗..........................67
4-3-1 原子力顯微鏡碳管的操控........................67
4-3-2 原子力顯微鏡對在矽基板上的碳管做局部氧化微影..70
4-4 利用介電泳製作出碳管探針並掃出 STM 的影像.......77
第五章 結論 81
參考書目 85
附錄一 介電泳的理論原理............................88
[1] S. Iijima, Nature (London) 354, 56-58 (1991).
[2] S. Iijima, and T. Ichihashi, Nature (Lodon) 363, 603 (1993).
[3] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature (London) 363, 605 (1993).
[4] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature (London), 391, 59-62 (1998).
[5] T. W. Odom, J. L. Huang, P.kim, and C. M. Lieber, Nature (London), 391, 62-64 (1998).
[6] B.I. Yakabson, R.E. Smalley, Am Sci., 85, 324 (1997)
[7] Rodney S. Ruoff and Donald C. Lorents, Carbon, 33, 925 (1995)
[8] Sumit Chaudhary, Joong Hyun Kim, Krishna V. Singh, and Mihrimah Ozkan, Nano Letters, 4, 12, 2415-2419 (2004).
[9] T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, and R.E. Smalley, Chemical Physics Letters 243, (1-2), 49-54 (1995)
[10] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J.Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F.Rodriguez-Macias, Y.S. Shon, T. R. Lee, D. T. Colbert, and R. E.Smalley, Secince 280, 1253-1256 (1998).
[11] 邱聞鋒, 國立中央大學碩士論文, 24-25 (2004).
[12] 益弘儀器股份有限公司, 離心機原理介紹及操作
[13] M. Elbaum and S.G. Lipson, Physical Review Letters, 72, 3562-3565 (1994).
[14] Charles Kittel and Herbert Kroemer, Thermal Physics, 2ed, 291-295 (1980)
[15] Frank L. Pedrotti, S.J. Leno S. Pedrotti, Introduction to Optics, 323-345.
[16] S. M. Curry, A. L. Schawlow, AJP, 42, 412-413 (1974).
[17] G.Binning, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett., 49, 57 (1983).
[18] Jian Zhang, Jie Tang, Guang Yang, Qi Qiu, Lu-Chang Qin, and Otto Zhou, Adv. Mater., 16, 1219-1222 (2004).
[19] G. Binning, C.F Quate, and C. Gerber, Phys. Rev. Lett., 56, 930 (1986) .
[20] 林鶴南, 李龍正, 劉克迅, 科儀新知, 17, (3), 29, (1995) .
[21] NT-MDT Solver P47 Instruction Mannual (NT-MDT Co., Moscow, Russia, 2002) .
[22] Henk W. C. Postma, Allard Sellmeijer, and Cees Dekker, Adv. Mater. 2000, 12, No. 17, September1, (1299-1302)
[23] Liesbeth C. Venema, J. W. G. Wildoer, H. L. J. Temminck Tuinstra, and C. Dekker, Appl. Phys. Lett., 71 (18), 2629-2631 (1997).
[24] Ji-Yong Park, Yuval Yaish, Markus Brink, Sami Rosenblatt, and Paul L. McEuen, Applied Physics Letters, 80, 4446-4448 (2002)
[25] Dal-Hyun Kim and Ja-Yong Koo, Physical Review B, 68, 113406 (2003)
[26] J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, Appl. Phys.Lett., 56, (20), 2001 (1990).
[27] H. C. Day and D. R. Allee, Appl. Phys. Lett., 62, (21), 2691 (1993)
[28] 簡世森, 果尚志, 科儀新知, 24, (3), 27 (2000)
[29] J.A. Dagate, T. Inoue, J Itoh, K. Matsumoto, and H. Yokoyama, J. Appl. Phys. Lett., 75,(2), 199 (1999).
[30] Xiaojie Duan, Jin Zhang, Xing Ling, and Zhongfan Liu, J. AM. CHEM. SOC., 127, 8268-8269 (2005).
[31] The AP-grade product consists of prepared bundles of single-walled carbon nanotubes, with 10-200 individual nanotubes per bundle. The average diameter of the nanotubes is 1.3 nm, with almost all tubes falling within the diameter range of 1.2-1.5 nm. The purity of the AP-grade products ranges from 50% to 70% by volume. Major impurities are carbon nanospheres and carbon-encapsulated catalyst nanoparticles(Ni, Y).
[32] J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, and H. Yokoyama, Journal of Applied Physics, 84, (12), 6891, (1998).
[33] NT-MDT Cantilever NSG 11 datasheet.
[34] 粘正勳, 邱聞鋒, 物理雙月刊, 廿三卷六期, 492-497, (2004).
[35] T.B. Jones, Electromechanics of Particles, New York: Cambridge University Press (1995)
[36] T. B. Jones, IEEE Engineering in Medicine and Biology Magazine, Nov/Dec, 33-42 (2003)
[37] Jie Tang, Bao Gao, Huaizhi Geng, Orlin D. Velev, Lu-Chang Qin, and Otto Zhou, Adv. Mater., 15, 1352-1355 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊