跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 05:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄒育霖
研究生(外文):Yu-Lin Zou
論文名稱:Ka頻段低相位雜訊雙推式振盪器之研製
論文名稱(外文):Study on Ka-band Low Phase Noise Push-Push Oscillator
指導教授:邱煥凱
指導教授(外文):Hwann-Kaeo Chiou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:92
中文關鍵詞:雙推式
外文關鍵詞:push push
相關次數:
  • 被引用被引用:14
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文所研究的內容為微波振盪器之積體電路設計,為降低高頻振盪器的相
位雜訊,論文使用雙推式振盪器架構,並且以理論證明此架構確實可有效改善相
位雜訊。使用WIN pHEMT 0.15-μm 製程的電路包括(1)Ka-頻段基頻壓控振盪
器,振盪頻率為24.97 GHz,可調頻率範圍270 MHz,偏移主頻1 MHz 之相位雜
訊為-96.84 dBc/Hz;(2)Ku-頻段有限接地之共面波導基頻振盪器,振盪頻率14.75
GHz,偏移主頻1 MHz 之相位雜訊為-118.96 dBc/Hz,優化指數(FOM)為-191.8
dBc/Hz ;(3)Ka-頻段有限接地之共面波導雙推式振盪器,振盪頻率為30.3 GHz,
偏移主頻1MHz 之相位雜訊為-113.2 dBc/Hz,優化指數為-188.16 dBc/Hz 。最後
是使用TSMC CMOS 0.18-μm 製程所實現的(4)Ka-頻段交互耦合之雙推式壓控振
盪器,振盪頻率為26.7 GHz,可調頻率範圍為1.95 GHz,偏移主頻1 MHz 之相
位雜訊為-117.5 dBc/Hz。且此電路展現出優異的優化指數為-199.82 dBc/Hz。
The content of this thesis is about microwave oscillator integrated circuit design.
The push-push oscillator topology is used in this thesis to lower phase noise of high
oscillation frequency oscillator. General phase noise theory on push-push oscillator is
developed to prove it’s naturally having low phase noise property. WINTM pHEMT
0.15-μm technology is adopted to implement:(1) Ka-band fundamental VCO. The
oscillation frequency is 24.97 GHz, tuning range is 270 MHz, and phase noise is
-96.84 dBc/Hz at 1MHz offset;(2) The second circuit is a Ku-band Finite Ground (FG)
CPW fundamental oscillator. The oscillation frequency is 14.75 GHz, phase noise is
-118.96 dBc/Hz at 1 MHz offset, and -191.8 dBc/Hz of Figure-of-Merit(FOM);(3)
The third circuit is a Ka-band FG CPW push-push oscillator. The oscillation
frequency is 30.3 GHz, phase noise is -113.2 dBc/Hz at 1MHz offset, and FOM is
-188.16 dBc/Hz. Finally, TSMC CMOS 0.18-μm technology is adopted to implement
the fourth circuit which is a Ka-band cross-coupled push-push VCO. The oscillation
frequency is 26.7 GHz, tuning range is 1.95 GHz, phase noise is -117.5 dBc/Hz at
1MHz offset and exhibited an excellent FOM of -199.82 dBc/Hz.
目錄
第一章、緒論 1
1-1、研究動機 1
1-2、研究成果 1
1-3、章節概述 2
第二章、微波光子接收機之本地端電路研製 3
2-1、毫米波收發機簡介 3
2-2、WIN GaAs 0.15-μm pHEMT 製程技術簡介 4
2-3、振盪器原理分析 5
2-3-1、巴克豪森振盪原理分析 6
2-3-2、負電阻振盪原理分析 8
2-3-3、電晶體之穩定度分析 13
2-4、相位雜訊理論分析 16
2-4-1、相位雜訊之定義 16
2-4-2、相位雜訊對射頻通訊系統之影響 17
2-4-3、雷森公式理論 18
2-4-4、時變相位雜訊模型的建立 20
2-4-5、改善相位雜訊之方式 26
2-5、Ka-頻段基頻壓控振盪器設計 28
2-5-1、電路架構及設計原理分析 28
2-5-2、Ka-頻段基頻壓控振盪器之量測結果 31
第三章、低相位雜訊之雙推式振盪器設計 34
3-1、雙推式振盪器簡介 34
3-1-1、架構簡介 34
3-1-2、雙推式模態之理論 35
3-1-3、架構比較 38
3-2、雙推式振盪器架構之相位雜訊分析 40
V
3-2-1、相位雜訊模型之建立 40
3-3、有限接地共平面波導之基頻與雙推式振盪器設計 43
3-3-1、Ku-頻段基頻振盪器電路之架構及設計流程 43
3-3-2、Ku-頻段基頻振盪器之量測結果 45
3-3-3、Ka-頻段雙推式振盪器之實現及量測結果 47
3-3-4、基頻振盪器與雙推式振盪器之結果討論 51
第四章、應用於Ka 頻段之CMOS雙推式壓控振盪器設計 55
4-1、CMOS 電晶體模型分析 55
4-2、Ka-頻段CMOS 交互耦合之雙推式振盪器架構理論分析 58
4-2-1、子電路架構之比較 58
4-2-2、Ka-頻段CMOS 交互耦合雙推式壓控振盪器設計原理與流程 59
4-2-3、NP 互補式交互耦合雙推式振盪器架構之時變相位雜訊模型 63
4-3、Ka-頻段CMOS 交互耦合雙推式壓控振盪器之量測結果 70
4-4、晶片之結果與討論 74
第五章、結論 78
5-1、論文重點 78
5-2、論文貢獻 79
5-3、未來研究 79
參考文獻 80
參考文獻
[1] N. Nguyen,.M.Meyer, and R.G.;” Start-up and frequency stability in high-frequency oscillators,”
Solid-State Circuits, IEEE Journal of Volume 27, Issue 5, May 1992 Page(s):810 – 820.
[2] Guillermo Gonzalez, Microwave Transistor Amplifiers Analysis and Design Second Edition,
Prentice Hall 1997.
[3] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J.
Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[4] M. Grozing, T. Stumpf, S. Hanger, andM. Betroth, “MOSFET thermal- and 1/f-noise modulating
functions for the impulse sensitivity function theory of oscillator phase noise Microwave
Conference,” 2004. 34th European Volume 2, 13 Oct. 2004 Page(s):949 - 952
[5] Y. Tang and H. Wang, “Triple-push oscillator approach: Theory and experiments,” IEEE J.
Solid-State Circuits, vol. 36, no. 10, pp. 1472–1479,Oct. 2001
[6] R. G. Freitag, S. H. Lee, D. M. Krafcsil, D. E. Dawson, and J. E. Degenford, ‘Stability and
improved circuit modeling considerations for high power MMIC amplifiers,” I988 IEEE MTT-S
International Microwave Symposium Digest, New York, NY, pp. 125-128, May, 1988.
[7] Ronald. Freitag “A Unified Analysis of MMIC Power Amplifier Stability,” 1992 IEEE MTT-S
Digest.
[8] J. E. Post, Jr., I. R. Linscott, and M. H. Oslick, “Waveform Symmetry Properties and Phase Noise
in Oscillators,” Electron. Letter, vol. 34, no. 16, pp. 1547-1548, August 1998.
[9] Sunkyu Choi, Yongsik Jeong, and Kyounghoon Yang”Low DC-Power Ku-Band Differential VCO
Based on an RTD/HBT MMIC Technology,” IEEE Microwave and Wireless Components Letters,
Vol. 15,No. 11, Nov. 2005
[10] D. Baek, S. Ko, J. Kim, D. Kim, and S. Hong ,“Ku-band InGaP-GaAs HBT MMIC VCOs with
balanced and differential topologies,” IEEE Trans. Microwave. Theory Tech., vol. 52, no. 4, pp.
1353–1359, Apr. 2004.
[11] V. Manan, S.I. Long,” A low power and low noise p-HEMT ku band VCO,” IEEE Microwave and
Wireless Components Letters, VOL. 16, NO. 3, Mar. 2006
[12] T.K.K.Tsang; M.N El-Gamal,”A high figure of merit and area-efficient low-voltage (0.7-1 V) 12
GHz CMOS VCO,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2003 IEEE 8-10
June 2003 Page(s):89 - 92
[13] Nam-Jin Oh; Sang-Gug Lee “11-GHz CMOS differential VCO with back-gate transformer
feedback,”Microwave and Wireless Components Letters, IEEE see also IEEE Microwave and
Guided Wave Letters Volume 15, Issue 11, Nov. 2005 Page(s):733 – 735
[14] Yi-Jan Emery Chen, Wei-Min Lance Kuo, Jongsoo Lee, John D. Cressler Joy Laskar, and Greg
Freeman,”A Low-Power Ka-Band Voltage-Controlled Oscillator Implemented in 200-GHz SiGe
HBT Technology,” IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5,
May 2005.
81
[15] To-Po Wang , Ren-Chieh Liu, Hong-Yeh Chang , Liang-Hung Lu and Huei Wang,”A 22-GHz
Push-Push CMOS Oscillator using Micro-machined Inductors,” IEEE Microwave and Wireless
Component Letter, Vol. 15, No. 12, December 2005.
[16] Belinda Piernas, and Kenjiro Nishikawa,”A Compact and Low-Phase-Noise Ka-Band
pHEMT-Based VCO,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No.
3, March 2003.
[17] J. Lin, K. Y. Chen, D. A. Humphrey, R. A. Hamm, R. J. Malik, A. Tate, R. F. Kopf, and R. W.
Ryan, “Ka-band monolithic InGaAs/InP HBT VCO’s in CPW structure,” IEEE Microw. Guided
Wave Lett., vol. 5, no.11, pp. 379–381, Nov. 1995.
[18] Xiao, H.; Tanaka, T.; Aikawa, M.”A Ka-band quadruple-push oscillator,” Microwave Symposium
Digest, 2003 IEEE MTT-S International Volume 2,8-13 June 2003 Page(s):889 - 892 vol.2
[19] Pietro Andrean , Xiaoyan Wang , Luca Vandi , and Ali Fard “A Study of Phase Noise in Colpitts
and LC-Tank CMOS Oscillators,” IEEE Jounal ot Solid-State Circuits, Vol. 40, No. 5, May 2005.
[20] Pietro Andreani, and Xiaoyan Wang ,“On the Phase-Noise and Phase-Error Performances of
Multiphase LC CMOS VCOs,” IEEE Jounal ot Solid-State Circuits, VOL. 39, NO. 11, Nov. 2004.
[21]鄒育霖 ”Ka與V頻段低相位雜訊雙推式振盪器之研製碩士論文”,中央大學,2006
[22] To-Po Wang, Ren-Chieh Liu, Hong-Yeh Chang, Liang-Hung Lu, and Huei Wang, “A 22-GHz
Push-Push CMOS Oscillator Using Micromachined Inductors,” IEEE Microwave and Wireless
Components Letters, VOL. 15, NO. 12, December 2005
[23] Yi-Hsien Cho, Ming-Da Tsai, Hong-Yeh Chang, Chia-Chi Chang, Huei Wang. “A Low Phase
Noise 52GHz Push-Push VCO in 0.18mm Bulk CMOS Technologies,” 2005 IEEE Radio
Frequency Integrated Circuits Symposium.
[24] Ping-Chen Huang, Ren-Chieh Liu, Hong-Yeh Chang, Chin-Shen Lin, Ming-Fong Lei, Huei Wang,
Chia-Yi Su', and Chia-Long Chang “A 131 GHz Push-push VCO in 90-nm CMOS Technology,”
2005 IEEE Radio Frequency Integrated Circuits Symposium.
[25] Ming-Da Tsai, Yi-Hsien Cho, and Huei Wang, “A 5-GHz Low Phase Noise Differential Colpitts
CMOS VCO” IEEE Microwave and Wireless Components Letters, Vol. 15, No. 5, May 2005.
[26] KaChun Kwok and Howard C. Luong, Senior Member, IEEE ”Ultra-Low-Voltage
High-Performance CMOS VCOs Using Transformer Feedback,” IEEE Journal of Solid-State
Circuits, Vol. 40, No. 3, March 2005.
[27] C.C. Meng, C.H. Chen, Y.W. Chang and G.W. Huang “5.4 GHz -127 dBc/Hz at 1MHz
GaInP/GaAs HBT quadrature VCO using stacked transformers,” Electronics Letters 4th August
2005 Vol. 41 No. 16.
[28] C. C. Meng, Y. W. Chang, and S. C. Tseng ”4.9-GHz Low-Phase-Noise Transformer-Based
Superharmonic-Coupled GaInP/GaAs HBT QVCO,” IEEE Microwave and Wireless Components
Letters.
[29] Behzad Razavi,”A Study of Phase Noise in CMOS Oscillator,” IEEE Journal of Solid-State
Circuits, VOL. 31, NO. 3, March 1996.
82
[30] Emad Hegazi ,Henrik Sjöland, and Asad A. Abidi. ”A Filtering Technique to Lower LC Oscillator
Phase Noise” IEEE Journal of Solid-State Circuits, Vol. 36, No. 12, December 2001.
[31] 劉偉正, “ 應用於ISM 與Ka 頻段之射頻收發機前端電路研製,” 碩士論文,中央大學,2004
[32] 陳一嘉, “ 5.5/14 GHz 壓控振盪器與髮夾式/環型耦合濾波器之研製” 碩士論文,中央大
學,2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊