跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/04 17:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳志豪
研究生(外文):Chih-Hao Chen
論文名稱:熱化學氣相沉積法成長橫向碳奈米管之電性研究
論文名稱(外文):Electrical characterization of laterally grown carbon nanotube by thermal CVD
指導教授:黃豐元黃豐元引用關係
指導教授(外文):Fuang-Yuan Huang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:87
中文關鍵詞:碳奈米管接觸電阻退火低溫量測
外文關鍵詞:Carbon NanotubeContact ResistanceAnnealingLow Temperature Measurement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用化學氣相沉積法(Thermal Chemical Vapor Deposition)成長橫向碳奈米管(Carbon nanotubes, CNTs)於二極元件上,且探討碳源供給型態、載氣型態及成長時間對碳管整合之二極元件的電性影響,並利用參數的控制來達到少根碳管橋接於兩極之間。在載氣中若增加氮氣含量,可有效提高碳管石墨化,但也使碳奈米管成長數量大幅減少,因此在考慮碳管高石墨化下,並得到少根碳管橋接又不至於使元件斷路,選擇含氮量為50%為最佳參數。利用此組參數於三極元件上,並成功在不同間距成長少根碳管懸接,在搭配三條獨立方程式輕易求解出橋接於不同間距中各碳奈米管之內電阻,與碳奈米管/金屬電極接面之接觸電阻,並透過退火步驟,碳奈米管之內電阻變化不是太大,但接觸電阻在連續退火至900℃會有最低值,其值由幾百KΩ下降至十幾KΩ,並且從室溫至40K下作測量電性,可發現碳管電阻值會因為環境溫度下降,而有升高之趨勢,但接觸電阻則無明顯的變化。
The objective of this disquisition presented that laterally grown carbon nanotubes (CNTs) on diode devices by thermal chemical vapor deposition (Thermal CVD). Follow growing, the electrical characterization of various parameters including carbon source, carrier gas and grown time on carbon nanotube growth was discussed. Singular or few carbon nantubes were bridged on diode device by controlling the proper parameters. As nitrogen concentration increased, number of bridged CNTs reduced. Addition of N2 enhanced the degree of graphitization of CNTs but the diode device was an open circuit and length of CNTs was shorter at the nitrogen concentration of 60%. The proper nitrogen concentration was 50%. Using the parameter on triode device, it was formed a metal /carbon nanotube /metal /carbon nanotube /metal structure. Contact resistance, Rc , and tow net resistances, RCNT1 and RCNT2, were determined from three equations. In the triode device, the effect of annealing on the resistances of CNT itself was not noticeable. The contact resistance between CNTs and metal electrode could be reduced most after 900 C annealing process. From 40 K to room temperature, resistances of CNTs themselves decreased with temperature while the contact resistance between CNTs and metal electrode remained unchanged.
目 錄
中 文 摘 要 I
英 文 摘 要 II
謝 誌 III
目 錄 IV
圖 目 錄 VI
表 目 錄 XI
符 號 說 明 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 碳奈米管與文獻回顧 5
2.1 碳奈米管的發現與特性 5
2.2 碳奈米管的晶體結構與排列 9
2.3 碳奈米管的合成方法與成長機制 13
2.4 碳奈米管電性與接觸電阻 18
2.5 碳奈米管之相關應用 19
第三章 實驗內容 23
3.1 實驗方法 23
3.2 實驗流程 25
3.3 橫向碳管元件整合與製作 26
3.3.1 光罩設計 27
3.3.2 元件製作步驟 28
3.4 碳奈米管鑑定方法 31
3.5 橫向成長碳奈米管整合元件之電性分析 33
3.6 實驗儀器簡介 36
第四章 結果與討論 39
4.1 島塊結構與成長碳奈米管 39
4.2 尺寸結構對於成長碳奈米管的影響 42
4.3 二極元件在不同成長參數的電性 45
4.3.1 碳源中乙烯比例對總電阻的影響 45
4.3.2 載氣中氮氣比例對總電阻的影響 53
4.3.3 成長時間對總電阻的影響 58
4.4 利用三極元件作碳奈米管之電性探討 63
4.4.1 退火後碳奈米管之電性 68
4.4.2 在低溫環境下碳奈米管之電性 74
第五章 結論 80
第六章 未來工作與展望 82
參 考 文 獻 83
[1] Y. F. Hsiou, Y. J. Yang, L. Stobinski, Watson Kuo and C. D. Chen, “Controlled Placement and Electrical Contact Properties of Individual Multiwalled Carbon Nanotubes on Patterned Silicon Chips,” Appl. Phys. Lett. (2003).
[2] Ho Jung Hwang, Jeong Won Kang, “Carbon-nanotube-based nano -electromechanical switch,” Physical E 27 (2005) 163–175.
[3] L. Peters, “Pursuing the Perfect Low-k Dielectric”, Semiconductor International, September 1998.
[4]邱顯光、蔡明蒔、林鴻志,“雙鑲嵌結構製作技術簡介”,奈米通訊,第六卷,第三期。
[5] B. Q.Wei, R. Vajtai, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes,” Appl. Phys. Lett., v 79, p1172–1174, Aug. 2001.
[6] F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, and W. Honlein, “Carbon nanotubes in interconnect applications,” Microelectron. Eng., v 64, p399–408, Oct. 2002.
[7] Q. Ngo, D. Petranovic, S. Krishnan, A. M. Cassell, Q. Ye, J. Li, M. Meyyappan, and C. Y. Yang, “Electron transport through metal–multiwall carbon nanotube interfaces,” IEEE Trans. Nanotechnol., v 3, n 2, p311–317, Jun. 2004.
[8] J. Phys. Chem, “Structures and Electronic Properties of Peanut-Shaped Dimers and Carbon Nanotubes,” Journal of Physical Chemistry B, v 109, n 21, Jun 2, 2005, p 10957-10961.
[9] H. W. Kroto, J. R. Heath, S. C.O. ,Brien, R. F. Curl and R. E. Smally, Nature (London), 318 (1985) 162.
[10] W.I.F. David, R.M. Ibberson, J.C. Matthewman, “Crystal structure and bonding of ordered C60,” Nature, v 353, n 6340, Sep 12, 1991, p147.
[11] S. Iijima, “Helical microtubules of graphitic carbon,” Nature v 354, n 6348, Nov 7, 1991, p56.
[12] S. Iijima, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, v 363, n 6430, Jun 17, 1993, p603.
[13] Phaedon Avouris, “Carbon nanotube electronics,” Chemical Physics 281 (2002)429–445.
[14] Wolfgang Hoenlein, Franz Kreupl, Georg Stefan Duesberg, “Carbon Nanotube Applications in Microelectronics,” IEEE transactions on components and packaging technologies , v 27, n 4, December 2004.
[15] M.S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes,” Carbon, v 33, n 7, 1995, p883-891.
[16] Giuseppe Gulino, Ricardo Vieira, Julien Amadou, “C2H6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapour deposition,” Applied Catalysis A: General 279 (2005) 89–97.
[17] E. Watanabe, K. Tsukagoshi , I. Yagi, Y. Aoyagi, “Fabrication of Coulomb blockade device utilizing the 0.34 nm interlayer spacing in a multiwalled carbon nanotube,” Microelectronic Engineering 73–74 (2004) 666–669.
[18] Du Feng, Ma Yanfeng, Lv Xin, Huang Yi, Li Feifei, Chen Yongsheng, “The synthesis of single-walled carbon nanotubes with controlled length and bundle size using the electric arc method,” Carbon, v 44, n 7, June, 2006, p1327-1330.
[19] Sergei Lebedkin, Peter Schweiss, Burkhard Renker, Sharali Malik, “Single-wall carbon nanotubes with diameters approaching 6 nmobtained by laser vaporization,” Carbon 40 (2002) 417–423.
[20] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu,
Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G.Scuseria,D Tomnek, J. E. Fischeo,and R. E. Smalley, “Crystalline ropes of metallic carbon nanotubes ,” Science, 273 (1996) , p483-487.
[21] X. Wang, Z. Hu, Q. Wu, X. Chen, and Y. Chen, “Synthesis of multi-walled carbon nanotubes by microwave plasma-enhanced chemical vapor deposition,” Thin Solid Films, v 390, n 1-2, Jun 30, 2001, p130-133
[22] Mineo Hiramatsu, Masaki Taniguchi, Hidetoshi Nagao, Yoshinori Ando, Masaru Hori, “Fabrication of Dense Carbon Nanotube Films Using Microwave Plasma-Enhanced Chemical Vapor Deposition,” Japanese Journal of Applied Physics, v 44, n 2, 2005, p1150-1154.
[23] J. H. Han et al., “Effects of growth parameters on the selective area growth of carbon nanotubes,” Thin Solid Films, 409 (2002) 126.
[24] Ta-Tung Chen, Yih-Ming Liu, Yuh Sung, Ha-Tao Wang, Ming-Der Ger, “Experimental investigation on carbon nanotube grown by thermal chemical vapor deposition using non-isothermal deposited catalysts,” Materials Chemistry and Physics 97 (2006) 511–516.
[25] S. B. Sinnott et al., “Model of carbon nanotube growth through chemical vapor deposition,” Chem. Phys. Lett., 315 (1999) 25.
[26] Lee Tae Young , Han Jae-Hee, Choi Sun Hong, Yoo Ji-Beom, Park Chong-Yun, Jung Taewon, Yu SeGi, Lee Junghee, Yi Whikun, Kim Jong Min, “Comparison of source gases and catalyst metals for growth of carbon nanotube,” Surface and Coatings Technology 169 –170 (2003) 348–352.
[27] Alexei Svizhenko, M. P. Anantram, and T. R. Govindan, “Ballistic Transport and Electrostatics in Metallic Carbon Nanotubes,” IEEE transactions on nanotechnology, v 4, n 5, September 2005.
[28] F. Wakaya, K. Katayama, K. Gamo, “Contact resistance of multiwall carbon nanotubes,” Microelectronic Engineering 67–68 (2003) 853–857.
[29] Quoc Ngo, Dusan Petranovic, Hans Yoong, Shoba Krishnan, and Cary Y. Yang, “Surface Phenomena at Metal-Carbon Nanotube Interfaces,” Nanotechnology, 2003. IEEE-NANO 2003.
[30] Akinobu Kanda, Kazuhito Tsukagoshi, Seiji Uryu, Youiti Ootuka, Yoshinobu Aoyagi, “Resistance dependence of transport properties in metal–multiwall carbon nanotube–metal structures,” Microelectronic Engineering 63 (2002) 33–37
[31] K. Tsukagoshi, A. Kanda, N. Yoneya,; E. Watanabe, Y. Ootuka, Y. Aoyagi, “Nano-electronics in a multiwall carbon nanotube,” Microprocesses and Nanotechnology Conference, 2001 International, 31 Oct.-2 Nov. 2001 Page(s):280 – 281.
[32] J. Knoch, S. Mantl, J. Appenzeller, “Comparison of transport properties in carbon nanotube field-effect transistors with Schottky contacts and doped source/drain contacts”, Solid-State Electronics 49 (2005) 73–76.
[33] http://wwwt.teconano.com.tw/
[34] G. Pirio, P. Legagneux, D Pribat, K. B. K Teo, M. Chhowalla, G. A. J Amaratunga, W. I. Milne, “Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode,” Institute of physics publishing, Nanotechnology 13 (2002) 1–4.
[35] R. Martel et al., “Single and multi-wall carbon nanotube field-effect transistors,” Applied Physics Letters, v 73, n 17, Oct 26, 1998, p2447.
[36] A.P. Graham, G.S. Duesberg, R. Seidel, M. Liebau, E. Unger, F. Kreupl, W. Honlein, “Towards the integration of carbon nanotubes in microelectronics”, Diamond and Related Materials 13 (2004) 1296–1300.
[37] Li Jun, Ye Qi, Cassell Alan, Ng Hou Tee, Ramsey Stevens, Jie Han, M. Meyyappan, “Bottom-up approach for carbon nanotube interconnects,” Applied physics letters, v 82, n 15, 14 April 2003.
[38] H. M. Cheng, Q. H. Yang, and C. Liu, “Hydrogen storage in carbon nanotubes,” Carbon, v 39, n 10, 2001, p1447-1454.
[39] Tony McNally, Petra Potschke, Peter Halley, Michael Murphy, Darren Martin, Steven E.J. Bell, Gerard P. Brennan, Daniel Bein, Patrick Lemoine, John Paul Quinn, “Polyethylene multiwalled carbon nanotube composites,” Polymer 46 (2005) 8222–8232.
[40] Pulickel M. Ajayan, Linda S. Schadler, Cindy Giannaris, and Angel Rubio, “Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness,” Advanced Materials, v 12, n 10, May, 2000, p750-753.
[41] C. Stampfer, T. Helbling,† D. Obergfell, B. Scho1berle, M. K. Tripp, A. Jungen, S. Roth, V. M. Bright, C. Hierold, “Fabrication of Single-Walled Carbon-Nanotube-Based Pressure Sensors,” Nano Letters, v 6, n 2, February, 2006, p 233-237.
[42] Y. Y. Wei and Gyula Eres, “Direct fabrication of carbon nanotube circuits by selective area chemical vapour deposition on pre-patterned structures,” Nanotechnology 11 (2000) 61–64. Printed in the UK.
[43] H. B. Peng, T. G. Ristroph, G. M. Schurmann, G. M. King, J. Yoon, V. Narayanamurti,J. A. Golovchenko, “Patterned growth of single-walled carbon nanotube arrays from a vapor-deposited Fe catalyst,” Applied physics letters, v 83, n 20, 17 Noverber 2003.
[44] Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, S. Iijima, “Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods,” Science, v 285, n 5434, Sep, 1999, p 1719-1722.
[45] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, Ph. Avouris, “Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes,” Physical Review Letters, v 87, n 25, Dec 17, 2001, p 256805/1-256805/4.
[46] A. B. Kaiser, G. C. McIntosh, K. Edgar, J.L. Spencer, H. Y. Yu, Y. W. Park, “Some problems in understanding the electronic transport properties of carbon nanotube ropes,” Current Applied Physics 1 (2001) 50-55.
[47] K. Kaneto, M.Tsuruta, G. Sakai, W. Y. Cho, Y. Ando, “Electrical conductivities of multi-wall carbon nano tubes,” Synthetic Metals, v 103, n 1-3 pt 3, Jun, 1999, p 2543-2546.
[48] B. Z. Yang, “Fabrication and conducting properties of laterally grown carbon nanotubes,”.2005
[49] Yuegang Zhang, Aileen Chang; Jien Cao , “Electric-field-directed growth of aligned single-walled carbon nanotubes,” Applied Physics Letters, v 79, n 19, Nov 5, 2001, p 3155-3157
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top