跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/04 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭允嘉
研究生(外文):Yun-Chia Cheng
論文名稱:節理岩體滲透係數之先天異向性與應力引致異向性
論文名稱(外文):Inherent and stress-dependent anisotropy of permeability for jointed rock masses
指導教授:董家鈞董家鈞引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:應用地質研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:62
中文關鍵詞:應力不連續面岩體滲透係數內寬
外文關鍵詞:Rock massStressPermeability.ApertureDiscontinuity
相關次數:
  • 被引用被引用:7
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
受節理切割之岩體,其不連續面所形成之複雜網絡往往是地下水滲流之重要通道。過去研究顯示,由室內試驗獲得之岩石材料滲透係數值,要明顯較由現地試驗所得之值低了幾個數量級,室內實驗所得岩體之滲透係數值之所以與現地極為不同,主要即因現地岩體滲透係數受現地之斷層、節理、裂隙等不連續面所影響。不連續面異向性分佈,將造成滲透係數之異向性。除了不連續面之異向性分佈外,異向性應力將造成不同方向之不連續面內寬閉合量不同,因此異向性應力亦將導致節理岩體之滲透係數異向性。本研究利用擬連續體模式,計算異向性節理岩體不連續面內寬隨正向應力改變之滲透係數張量(Permeability Tensor),此一滲透係數張量為節理岩體所受現地應力之函數。經參數敏感度分析結果顯示滲透係數異向性(k11/k33)將隨節理分佈異向性以及應力異向性(σ11/σ33)增加而增加;隨著節理長度增加,k11/k33不致造成明顯改變;節理正向勁度常數h與形狀係數c,雖將造成k11/k33值改變,但影響並不明顯。根據車籠埔鑽井岩心獲得之不連續面密度與方位資料,運用組構張量分析技術,可獲得節理空間分佈之定量資料,配合現地應力估計值,即可求得車籠埔鑽井附近節理岩體之破裂張量(Crack Tensor),進而探討車籠埔鑽井附近岩體之滲透係數張量異向性。於本研究假設之參數範圍內,k1/k3可達4∼7之間。
The fracture networks are major flow paths in jointed rock masses. Experiment results suggest that a marked difference exist between the permeabilities measured in the laboratory and in situ. The difference is due to the presence of faults, joints and other discontinuities in situ. Not only the anisotropic distribution of discontinuities, stress anisotropy can also cause permeability anisotropy. In this study, stress-dependent permeability tensor was evaluated using continuum approach. Based on the parameter sensitivity analysis, the ratio of anisotropic permeability, defined as k11/k33 , increases with the increasing anisotropy of the distribution of orientation of joints and stress ratio which defined as k11/k33 . The influence of joint size, normal stiffness constant and aspect ratio on anisotropic permeability. Based on the orientation of joints from deep drilling (TCDP) borehole image, the crack tensors can be determined using fabric tensor and in situ stress states. The anisotropy of permeability tensors in jointed rocks near the TCDP borehole can be estimated. The ratio of anisotropic permeability k1/k3 near the TCDP borehole is between 4 ~ 7.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1研究背景與目的 1
1.2 研究內容與方法 3
第二章 文獻回顧 6
2.1 滲透係數異向性 6
2.2 節理分佈特性 8
2.3 節理面內寬特性 8
2.3.1 水力內寬 9
2.3.2 力學內寬 9
2.4 應力引致之滲透係數異向性 10
2.5 節理岩體地下水流動分析 12
2.5.1 離散模式 13
2.5.2 擬連續模式 13
2.6 滲透係數張量相關參數 19
2.6.1 不連續面方位之密度函數 19
2.6.2 不連續面長度之密度函數 22
2.6.3 體密度 24
2.6.4 不連續面之形狀係數 26
2.6.5 正向勁度常數 26
第三章 節理岩體等值化滲透係數異向性敏感性分析 28
3.1 座標系統 28
3.2 參數合理範圍 29
3.3 節理岩體滲透係數之先天異向性(Inherent anisotropic) 31
3.3.1 節理法線向量分佈密度函數 為等向分佈、均向應力 32
3.3.2 節理法線向量分佈密度函數 非等向性分佈、均向應力 33
3.4 異向性應力引致節理岩體之滲透係數異向性 36
3.4.1節理法線向量分佈密度函數 為等向分佈、非均向應力 36
3.4.2節理法線向量分佈密度函數 非等向分佈、非均向應力 39
3.5 參數r、c及h對滲透係數值以及其異向性之影響 43
3.5.1 參數 、 及 對滲透係數值之影響 43
3.5.2參數 、 及 對滲透係數異向性之影響 45
第四章 節理岩體滲透係數異向性案例分析 48
4.1節理位態資料 48
4.2 節理體密度 50
4.3 現地應力資料 51
4.4 節理法線向量分佈異向性及應力張量異向性引致之滲透係數張量異向性 52
第五章 結論與建議 58
5.1 結論 58
5.2 建議 59
參考文獻 60
附錄A 程式驗證 A-1
附錄B 程式碼 B-1
1.Bandis, S.C., Lumsden, A.C. and Barton, N.R. (1983), “Fundamentals of rock joint deformation.” Int. J. Rock Mech. Min. Sci. & Geomech.Abstr, 20(6), 249-268.
2.Bandis S.C., Barton N.R., Christianson M (1985) Application of joint behavior to rock mechanics problems. Proc Int. Symp. on Fundamentals of Rock Joints, Bjorliden.
3.Barton C. M. (1977) “Geotechnical Analysis of Rock Structure and Fabric in C.S.A. Mine, Cobar, N.S.W.” Applied Geomechanics Technical Paper 24, C.S.I.R.O., Australia.
4.Brace, W. F. (1980), “Permeability of crystalline and argillaceous rocks.” Int. J. Rock Mech. Min. Sci. & Geomech.Abstr, 17,241-251.
5.Cheng, H.C, and Toksoz, M.N (1979), “A three-dimensional model to simulate joint networks in layered rocks”, Can. J. Earth Sci. 39, 1443-1455.
6.Dershowitz, W.S., Einstein, H.H., (1988), “Characterizing rock joint geometry with jount system models.” Rock Mech & Rock Eng. 21, 21-51.
7.Fortin, J., Schubnel. A. and Gueguen, Y. (2005), “Elastic wave velocities and permeability evolution during compaction of Bleurswiller sandstone”, Int. J. Rock Mech. Min. Sci. & Geomech.Abstr., 42, 873-889.
8.Goodman, R.E. (1989) “Introduction to Rock Mechanics.” Second Edition, 109-111.
9.Josnin, J.Y., Jourde, H., Fenart, P., and Bidaux, P. (2002), “Inversion of Seismic Velocities for the Pore Aspect Ratio Sperctrum of a Rock”, J. Geophys. Res. 84, 7533-7543.
10.Knatani, K. (1984), “Distribution of directional data and fabric tensors.”Int J. Engng. Sci., Vol.22, No.2, pp.149-164.
11.Kranz, R.L., (1983) “Microcracks in rocks: A review.” Tectonophysics 100, 449-480.
12.Lee, C.H., Deng, B.W., Chang, J.I. (1995), “A continuum approach for estimating permeability in naturally fractured rocks.” Engineer Geology 39, 71-85
13.Lee and Farmer (1993) “Fluid Flow in Discontinuous Rocks” First Edition. Chapman and Hall, 44-45
14.Long, J. C. S., Remer, J. S., Wilson, C. R. and Witherspoon, P. A. (1982), “Porous media equivalents for networks of discontinuous fractures.” Water Resour. Res, 18(3), 645-658.
15.Min, K. B., Jing, L. and Stephansson, O. (2004a) “Determining the equivalent permeability tensor for fracture rock masses using a stochastic REV approach: Method and application to the field data from Sellafield, UK”, Hydrogeology Journal 12(5), 497-510.
16.Min, K. B., Rutqvist, J., Tsang, C. F., Jing, L. (2004b) “Stress-dependent permeability of fractured rock ,masses: a numerical study.”, Int. J. Rock Mech. Min. Sci. 41, 1191-1210
17.Oda, M. (1985), “Permeability tensor for discontinuous rock masses” Geotechnique, 35(4), 483-495.
18.Oda, M. (1986), “An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses” Wat. Resour. Res, 22(13), 1845-1856.
19.Oda, M. (1993), “Modern developments in rock structure characterization.” in Compressive Rock Engineering.Vol.1.edited by J. A. Hudson. 185-200, Elsevier, New York.
20.Olsson R., Barton N. (2001), “An improved model for hydromechanical coupling during shearing of rock joints.” Int. J. Rock. Mech. & Min. Sci. 38, 317-329
21.Park, B.Y., Kim, K.S., Kwon, S., Kim, C., Bae, D.S., Hartley, L.J., Lee, H.K. (2002), “Determination of the hydraulic conductivity components using a three-dimensional fracture network model in volcanic rock.”, Engineer Geology 66, 127-141
22.Snow D.T. (1968), “Rock fracture spacings, openings, and porosites.” J. Soil Mech. Fdns Div. Am. Soc. Civ. Engrs 94, SM1, 73-91.
23.Snow D.T. (1969), “Anisotropic permeability of fractured media.” Water Resour. Res. 5: 1273-1289.
24.Terzaghi, K., and Peck, R.B. (1967) “Soil Mechanics in Engineering Practice 2nd ed., "Wiley, New York, 54-56.
25.Witherspoon P.A., Wang J.C.Y, Iwall, K., Gale, J.E. (1980) “Validity of cubic law for fluid flow in a deformable rock fracture.” Water Resour. Res. 16:140, 1016-1024
26.Wu, Y. Hung, J. Yeh, E, Dong, J. (2005) “Characters of Faults and Structures Revealed from Cores and Wire-line logs in Hole-A of the Taiwan Chelungpu-fault Drilling.” T51A-1309 POSTER, AGU fall meeting
27.Yabe, Y. Song, S., Wang, C. (2005) “Stress State Around Chelungpu Fault, Taiwan, Estimated From Boring Core Samples.” T51A-1316 POSTER, AGU fall meeting
28.Zimmerman R.W., Bodvarsson G.S. (1996) “Hydraulic conductivity of rock fractures.” Transport in Porous Media 23, 1-30
29.許世夢、翁夢嘉、曾慶恩、顧承宇、譚志豪(2006)“應用雙封塞水力試驗探討裂隙岩體之水力特性”,岩盤工程研討會,台南。
30.陳正旺 (2005) “車籠埔斷層周圍岩石力學特性之初探”,國立台灣大學土木工程學研究所碩士論文。
31.張智勇(2004)“軟弱沈積岩岩層滲透異向性之探討”,國立中央大學應用地質研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top