跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡振球
研究生(外文):Chen-Chiu Tsai
論文名稱:都市下水污泥灰燒結輕質化特性之研究
指導教授:王鯤生
指導教授(外文):Kuen-Sheng Wang
學位類別:博士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:174
中文關鍵詞:下水污泥灰輕質骨材燒結特性
外文關鍵詞:filtrationcharacteristicssinteringlightweight aggregateSewage sludge ash
相關次數:
  • 被引用被引用:21
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:7
本研究發現於不同下水污泥灰之特定燒成溫度下(1,050℃∼1,150℃),矽氧晶相含量將影響到骨材發泡輕質化的結果,而矽氧晶相中之玻璃相,則影響到輕質化效果之重要因子。在同一燒成溫度下,玻璃相含量愈多,則骨材體積膨脹與孔隙率增加,但密度與抗壓強度則降低;而石英相含量對骨材發泡輕質化效果,則有相反的影響,此乃因發泡輕質化作用需要足量的黏滯性玻璃相來包覆氣體,方能達成輕質化的效果。此外,除矽氧晶相變化外,骨材輕質化仍受燒製溫度、石英與玻璃相物質含量、助熔劑含量等影響。另藉由調質以改變燒結體的主成份,則可降低燒結溫度或輕質發泡的效果,惟不論使用石英砂、玻璃質或焚化飛灰等各式資材進行調質,燒結溫度仍為控制輕質發泡的主要關鍵因子。
The study found that the content of SiO2 in different sewage sludge ash affects the bloating effect of aggregates in the specific sintering temperature (1,050℃∼1,150℃), and the glass phase material of SiO2 further dominates the lightweight effect during the sintering process. The porosity and volume expanding rate of aggregates increase as the content of the glass phase materials in the sewage sludge ash increases under sintering in the specific temperature. However, the density and compression resistance are reduced at the same moment. In other hand, the crystal SiO2 in sewage sludge ash have negative influence on the bloating effect of aggregates. This is because sufficient Amorphous SiO2 material is needed to trap gaseous bubbles in order to enhance bloating effect. Additionally, except the phrase change of SiO2, there are several factors affecting the bloating effect of aggregates. The factors include sintering temperature, the content of crystal and amorphous phase material, and the flux. We could also reduce the sintering temperature or diminish the bloating effect of aggregates by adding crystal and glass, incinerated ash or etc to adjust the composition of the sewage sludge ash. However, sintering temperature is still the most crucial factor for controlling the bloating effect.
After the evaluation of the efficiency of turbidity removal, as for non-broken-sintered-filter by sintering time in 10min. and sintering temperature at 1,125℃, the filtration performance equal to the sand filled in the 10cm filter bed nearly. The optimum substitution ratio to sand was 25%. Sintered under the same conditions but crumbled artificially later, broken-sintered-filter improved the decreasing efficiency of turbidity removal into upwards, extending the filter run.In conclusion, the sintered filter reveals its potential to substitute the sand as the filter media of the deep bed filtration according to the properly physical and chemical characteristics, and the competence of turbidity removal.
摘要.........................................................................................................................I
Abstract ................................................................................................................. II
目錄....................................................................................................................... II
圖目錄..................................................................................................................VI
表目錄..................................................................................................................XI
第一章 前言.......................................................................................................... 1
1-1 研究緣起................................................................................................. 1
1-2 研究目的與內容..................................................................................... 2
第二章 文獻回顧.................................................................................................. 3
2-1 下水污泥產生現況與基本特性.............................................................. 3
2-1-1 國內下水污泥產生現況................................................................ 3
2-1-2 國外下水污泥產生與再利用現況分析........................................ 6
2-1-3 下水污泥灰之特性...................................................................... 12
2-1-3-1 下水污泥灰物理性質............................................................... 12
2-1-3-2 下水污泥灰的化學特性.......................................................... 13
2-2 燒結理論............................................................................................... 17
2-2-1 成形階段..................................................................................... 17
2-2-2 燒結階段..................................................................................... 24
2-2-3 燒結之機制.................................................................................. 30
2-2-4 影響燒結的因子.......................................................................... 32
2-3 燒結輕質化機制.................................................................................... 33
2-3-1 輕質骨材之燒結理論.................................................................. 33
2-3-2 輕質骨材中之氣體來源.............................................................. 41
2-3-2 主成份對輕質化機制的影響...................................................... 42
2-4 影響燒結輕質化之因素....................................................................... 44
2-4-1 材料特性因素對輕質化之影響.................................................. 44
2-4-2 鹼類物質之影響.......................................................................... 44
2-4-3 中性物變化之影響...................................................................... 46
2-4-4 酸性物變化之影響...................................................................... 47
2-5 下水污泥灰材料化與應用................................................................... 49
第三章 研究方法、流程與實驗設計............................................................... 52
3-1 研究架構說明....................................................................................... 52
3-2 實驗設計與流程................................................................................... 52
3-2-1 下水污泥灰粉體材料特性的解析.............................................. 54
3-2-2 不同種類下水污泥灰之輕質發泡效應分析.............................. 55
3-2-3 下水污泥灰比表面積變化對輕質發泡機制之影響.................. 56
3-2-4 矽氧材料調質對輕質發泡機制之影響...................................... 57
3-2-5 下水污泥灰和焚化飛灰之共同燒結輕質化探討...................... 58
3-3 研究材料、設備與儀器....................................................................... 59
3-3-1 研究設備...................................................................................... 59
3-3-2 使用儀器...................................................................................... 61
3-4 分析項目與方法.................................................................................... 62
第四章 下水污泥灰粉體材料特性................................................................... 69
4-1 下水污泥之基本特性........................................................................... 69
4-2 下水污泥灰基本特性分析................................................................... 70
4-2-1 下水污泥灰之物理特性.................................................................... 70
4-2-2 下水污泥灰之化學特性.................................................................... 75
4-3 下水污泥焚化灰之物種型態................................................................ 78
4-4 重金屬總量與TCLP 溶出濃度............................................................ 80
4-5 結語......................................................................................................... 81
第五章 下水污泥灰燒結輕質特性剖析........................................................... 83
5-1 燒結溫度對輕質化之影響剖析............................................................ 83
5-1-1 密度變化............................................................................................. 83
5-1-2 抗壓強度變化..................................................................................... 88
5-1-3 體積變化率........................................................................................ 89
5-2 污泥灰粉體比表面積變化對燒結輕質化之影響................................ 91
5-2-1 不同研磨時間之比表面積變化......................................................... 91
5-2-2 密度變化............................................................................................. 93
5-2-3 吸水特性變化..................................................................................... 96
5-2-4 體積變化率......................................................................................... 99
5-2-5 抗壓強度變化................................................................................... 101
5-2-6 燒結後試體物種型態變化............................................................... 104
5-2-7 試體之微結構變化........................................................................... 108
5-2-8 燒製試體之孔隙率與孔隙分佈....................................................... 115
5-3 結語....................................................................................................... 119
第六章 矽氧晶相調質對燒結輕質化之影響................................................. 122
6-1 污泥灰矽氧晶相含量計算.................................................................. 123
6-2 污泥灰矽氧晶相調質評估.................................................................. 126
6-2-1 密度變化.......................................................................................... 128
6-2-2 吸水率變化....................................................................................... 133
6-2-3 體積變化率....................................................................................... 137
6-2-4 單軸抗壓強度................................................................................... 140
6-3 物種型態變化...................................................................................... 145
6-4 微結構觀察結果.................................................................................. 146
6-5 燒結體界面反應與輕質化分析.......................................................... 147
6-6 結語...................................................................................................... 150
第七章 燒結輕質共同處理焚化飛灰之可行性評估..................................... 152
7-1 配比與主成份特性.............................................................................. 152
7-2 密度變化.............................................................................................. 155
7-3 體積變化.............................................................................................. 155
7-4 燒失量變化.......................................................................................... 158
7-5 抗壓強度變化...................................................................................... 159
7-6 吸水率變化.......................................................................................... 160
7-7 燒結體微結構觀察.............................................................................. 161
7-8 結語....................................................................................................... 163
第八章 結論...................................................................................................... 165
參考文獻............................................................................................................ 170
1. Alba, N., Gasso, S., Lacorte, T. and Baldasano, J. M.,
“Characterization of Municipal Solid Waste Incineration Residues
from Facilities with Different air Pollution Control Systems”,
Journal of the Air & Waste Management Association, Vol. 47, pp.
1170-1179(1997).
2. Anthony, T. C. and Tay, J. H., “Municipal Solid Waste Incinerator
Fly Ash for Geotechnical Applications”, Journal of Geotechnical
Engineering - ASCE, Vol. 119, No. 5, pp. 811-825(1993).
3. Buchholz, B. A. and Landsberger, S., “Trace Metal Analysis of
Size-Fractioned Municipal Solid Waste Incinerator Fly Ash and its
Leachates”, Journal of Environmental Science And Health. Part A,
Vol.28, No.2, pp.423-441(1993).
4. Chan, C., Jia, C. Q., Graydon, J. W. and Kirk, D. W., “The
Behaviour of Selected Heavy Metal in MSW Incineration
Electrostatic Precipitator Ash during Roasting with Chlorination
Agents”, Journal of Hazardous Materials, Vol. 50, pp.1-13(1996).
5. Chen, H. K. and Lin, C. I., “Variations of Physical Properties in
Pellets Containing Alumina / Carbon Powder Mixtures during
Reduction and Nitridation”, Journal of Materials Science, Vol. 31,
pp. 3549-3557(1996).
6. Coles, G. L., Ragaini, R. C., Ondov, J. M., Fisher, G. L., Silberman,
D. and Prentice, B. A., “Chemical Studies of Stack Fly Ash from a
Coal - Fired Power Plant”, Environmental Science & Technology,
Vol. 13, No. 4, pp. 455-459(1979).
7. Derie, R.,“A New Way to Stabilize Fly Ash from Municipal
Incinerators”, Waste Management, Vol. 16, No. 8, pp. 711-716
(1996).
8. Fernandez, M. A., Martinez, L., Segarra, M., Garcla, J. C. and
Espiell, F., “Behavior of Heavy Metals in the Combustion Gases of
Urban Waste Incinerators”, Environmental Science & Technology,
Vol. 26, No. 5, pp. 1040-1047(1992).
9. German, R.M., “Sintering Theory and Practice”,
Wiley-Interscience Publication (1996)
10. Hamernik, J. D. and Frantz, G. C., “Physical and Chemical
Properties of Municipal Solid Waste Fly Ash”, ACI Materials
Journal, Vol. 88, No. 3, pp. 294-301(1991).
11. Hasslriis, F., Licata, A., "Analysis of Heavy Metal Emission Data
from Municipal Waste", Journal of Hazardous material Material,
Vol,47 , pp.77-102(1996).
12. Iori, J., Balg, J. and Wieckert, C., “Detoxification of Municipal
Waste Incineration Residues by Vitrification”, ABB Review, Vol.
6/7, pp. 9-16(1995).
13. Jakob, A., Stucki, S. and Kuhn, P, “Evaporation of Heavy Metals
during the Heat Treatment of Municipal Solid Waste Incinerator
Fly Ash”, Environmental Science & Technology, Vol.29, No. 9, pp.
2429-2436(1995).
14. Nowok, J. W., Benson, S. A., Jones, M. L. and Kalmanovitch, D. P.,
“Sintering Behaviour and Strength Development in Various Coal
Ashes”, Fuel, Vol. 69, pp. 1020-1028(1990).
15. Ontiveros, J. T., Clapp, T. L. and Kosson, D. S., “Physical
Properties and Chemical Species Distributions Within Municipal
Waste Combuster Ashes”, Environmental Progress, Vol. 8, No. 3,
pp.200-206(1989).
16. Skrifvars, B. J., Hupa, M., Backman, R. and Hiltunen, M.,
“Sintering Mechanisms of FBC Ashes”, Fuel, Vol. 73, No. 2, pp.
171-176(1994).
17. Tay, J. H. and Goh, A. T. C., “Engineering Properties of Incinerator
Residue”, Journal of Environmental Engineering - ASCE, Vol. 117,
No. 2, pp. 224-235(1991).
18. Taylor, D. R., Tompkins, M. A., Kirton, S. E., Mauney, T. and
Natusch, F. S., “Analysis of Fly Ash Produced from Combustion of
Refuse-Derived Fuel and Coal Mixtures”, Environmental Science
& Technology, Vol. 16, No. 3, pp. 148-154(1982).
19. Wedge, A., Hutton, M. and Peterson, P. J., “The Concentrations and
Particle Size Relationships of Selected Trace Elements in Fly
Ashes from U.K. Coal-Fired Power Plants and a Refuse
Incinerator”, The Science of the Total Environment, Vol. 54,
pp.13-27(1986).
20. Wedge, A., “The Leachability and Chemical Speciation of Selected
Trace Elements in Fly Ash from Coal Combustion and Refuse
Incineration”, Environmental Pollution, Vol. 48, pp.85-99(1987).
21. Wunsch, P., Greilinger, C., Bienick, D. and Kettrup, A.,
“Investigation of the Binding of Heavy Metals in Thermally
Treated Residues from Waste Incineration”, Chemosphere, Vol. 32,
No. 11, pp.2211-2218(1996).
22. 王鯤生,江康鈺,“添加劑對垃圾焚化灰渣與下水污泥焚化
灰渣熔融操作溫度之影響”,一般廢棄物焚化灰渣資源化技
術與實務研討會 (1996),台北,第123 頁。
23. 王鯤生,彭竟凱,江康鈺,劉愷,“都市垃圾焚化飛灰成形
體燒結特性之研究”,第四屆海峽兩岸環境保護學術研討會(1997),中壢, 第627-634 頁。
24. 徐文慶、陳淑萍、張蕙蘭、許順珠、廖錦聰,“垃圾焚化灰
渣燒結資源化之研究“,第九屆廢棄物處理技術研討會
(1994),台北,第514 頁。
25. 余岳峰,『下水污泥焚化灰渣燒成輕質骨材特性之研究』,
碩士論文,國立中央大學環境工程研究所,中壢(1999)。
26. 張毓舜,『下水污泥焚化灰渣燒結特性之研究』,碩士論文,
國立中央大學環境工程研究所,中壢(1999)。
27. 歐陽嶠暉,許鎮龍,藍文忠,『都市污水處理廠污泥處理與
資源化再利用之研究』,第八屆下水道技術研討會論文集,
pp.19-33(1998)。
28. 王櫻茂,顏聰,『人造輕質骨材燒製及其物理化學性質研
究』,營建資訊第120 期,PP.17-29(1992)
29. 蘇南,林維明,『國內外輕質骨材科技之發展』,結構工程
第六卷第四期,pp.91-109(1991)
30. 高建章,「台北區頁岩燒結輕質骨材之研究」,高壓蒸汽養
護輕質混凝土研討會,台北(1991)
31. 李俊德,「輕質骨材性質與最佳混凝土強度之研究」,碩士
論文,國立台灣工業技術學院營建工程技術研究所,台北
(1996)
32. 楊萬發、賴聰華,“垃圾焚化灰燼特性分析及其固化處理之探
討”,第五屆廢棄物處理技術研討會 (1990),台北,第192 頁。
33. 伍祖璁,黃錦鐘(譯),German, R. M.(著),“粉末冶金”,高
立圖書公司,台北(1996)。
34. 李建中,李釗,何啟華,鄭清江,“垃圾焚化灰燼之力學特性與
在大地工程之應用”,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,pp. 193-225,台北(1996)。
35. 林錕松,黃鈺軫,王鴻博,張祖恩,張乃斌,“台灣地區都市垃
圾焚化灰渣物化組成與溶出特性探討”,一般廢棄物焚化灰渣資
源化技術與實務研討會,pp. 227-246,台北(1996)。
36. 程道腴,鄭武輝,“工業陶瓷”,徐氏基金會,台北(1981)。
37. 葉柱熙(譯),“粉末冶金學入門”,徐氏基金會,台北(1979)。
38. 曾豐益,“垃圾焚化飛灰及灰渣中重金屬之濃度與分佈的探
討”,國立中央大學環境工程研究所碩士論文,中壢(1994)。
39. 廖錦聰,「微粉體之諸性質及其燒結現象」,工業技術,第78
期,第39~43 頁(1980)。
40. 廖錦聰,“從日本的經驗談台灣焚化灰渣資源化方向”,一般廢
棄物焚化灰渣資源化技術與實務研討會論文集,pp.29-42,台北
(1996)。
41. 賴耿陽(譯),松山芳治,三谷裕康,鈴木壽(著),“粉末冶金
學概論”,復漢出版社,台南(1990)。
42. 顧順榮,“重金屬於都市垃圾焚化過程之濃度分布及溶出特
性”,國立中央大學環境工程研究所碩士論文,中壢(1994)。
43. 顧順榮,鍾昀泰,張木彬,“台灣地區都市垃圾焚化灰份中重金
屬濃度及TCLP 溶出之評估”,第十屆廢棄物處理技術研討會論
文集,pp. 271-279,台南(1995)。
44. 賴耿陽, “粉末冶金學概論”, 復漢出版社, pp.84~129(1980)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top