跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/02 23:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉勇志
研究生(外文):Yung-Chih Liu
論文名稱:波導模態共振濾波器頻譜平坦化之研究
論文名稱(外文):Research on Passband Flattening of Guided-Mode Resonance Filter
指導教授:張正陽張正陽引用關係
指導教授(外文):Jenq-Yang Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:65
中文關鍵詞:波導模態共振濾波器頻譜平坦化串接式波導光柵非對稱結構光柵
外文關鍵詞:cascadeflattenasymmetricGuided-mode resonancepassbandgrating
相關次數:
  • 被引用被引用:2
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
光學濾波器在光學被動元件上佔有相當大的重要性,不同的濾波器提供不同的光學特性,例如穿透(transmission) 與反射(Reflection)濾波器、帶通(bandpass)與帶止(bandstop)濾波器、以及窄頻(narrow bandwidth)與寬頻(wide bandwidth)濾波器等等。光學濾波器普遍的結構都是以薄膜堆疊(stacked thin-film)的方式為主,利用多層薄膜堆疊的結構所產生的干涉作用來達到濾波的效果;但是由於多層膜堆疊的結構,使得在製作技術上較為複雜,對於結構中各層材料舉凡是折射率、厚度、均勻性、甚至是膜層間的應力都需要仔細加以考慮。基於上述理由,本論文提出利用簡單結構製作的波導膜態共振濾波器(guided-mode resonance filter),以取代結構複雜之薄膜濾波器,並研究過濾頻譜平坦化之技術。
在頻譜平坦化的技術方面,本論文利用兩種不同的結構,提出設計的方法,同時加以製作並且量測濾波器之頻譜特性。首先,我們利用串接式(cascaded)結構,實驗上於波長1550 nm 的附近得到頻寬為1~3 nm的平坦化過濾頻譜;此外,我們也對兩串接元件之距離作容忍度的分析研究。接著,我們以非對稱光柵的結構,製作出中心波長約1.2 �慆 且頻寬達200 nm的平坦化過濾頻譜,並對該元件作角度容忍度(angular tolerance)的量測與分析,以驗證元件的角度穩定性。元件在設計模擬方面與實驗所得到的數據比較,頻譜特性都相當符合,這也說明了本論文所採用的結構設計能夠達到相當程度的效果,而其結構相對於薄膜濾波器來的簡單許多,在製作及應用上具有極大的價值與潛力。
Optic filters perform in the role of the passive device. Filters provide different optic characteristic, ex: transmission, reflection, bandpass and bandstop…etc. In general, optic filters are accomplished by stacking thin film, and the principle is interference. Because the material parameter, ex: index, thickness, uniform…etc, is difficult to control very well, the fabrication is complex. In this paper, we provide a simple device, guided-mode resonance filter, to substitute for the complex thin film structure, and research on passband flattening.

In passband flattening of guided-mode resonance filter, we provide the two different structures to design and fabricate. First, we utilize cascaded structures to obtain flattening bandwidth about 1~3nm. Then another structure is asymmetric grating profiles that obtain flattening bandwidth about 200nm. The profile asymmetry breaks the resonant leaky mode degeneracy at normal incidence thereby permitting precise spectral spacing of interacting leaky modes with interesting implications in optical filter design. These results demonstrate new dimensions in optical device design and may provide complementary capability with the field of thin-film optics.
第一章 導論................................................................1
1.1 光學薄膜濾波器......................................................3
1.2波導模態共振濾波器之簡介.............................................4
1.3 研究動機............................................................8
1.4 文獻回顧............................................................9
第二章 波導模態共振濾波器之原理...........................................11
2.1 繞射式光柵相關理論.................................................12
2.2 薄膜理論...........................................................15
2.2.1 等效折射率理論................................................16
2.2.2 光學薄膜理論..................................................19
2.3 嚴格耦合波理論.....................................................20
2.3.1 TE 偏振態………………………………………………20
2.3.2 TM 偏振態…………………………………………...…23
2.4 共振波導光柵共振條件與共振位置.......................................24
第三章 波導模態共振濾波器頻譜平坦化之設計……………………26
3.1串接式之波導模態共振濾波器...........................................28
3.1.1 薄膜理論在串接式波導模態共振濾波器結構之運用....................29
3.1.2 串接式波導模態共振濾波器之設計..................................32
3.1.3 製程與量測容忍度之模擬與分析....................................34
3.2非對稱光柵之波導模態共振濾波器.......................................36
3.2.1非對稱光柵之特性分析.............................................37
3.2.2非對稱光柵之之設計…………………………………......39
3.2.3製程與量測容忍度之模擬與分析......................................41
第四章 頻譜平坦化之波導模態共振濾波器之製作............................44
4.1波導模態共振濾波器之標準製作流程.....................................45
4.1.1 氮化矽波導模態共振濾波器結構之製作........................46
4.1.2 多晶矽波導模態共振濾波器之製作................................49
第五章 波導模態共振濾波器之測量結果與分析…………………..51
5.1 串接式結構之量測結果與分析..........................................53
5.1.1 串接式結構之量測方式.............................................53
5.1.2 量測結果與理論設計之比對........................................54
5.1.3 量測結果與製程之比對.............................................56
5.2非對稱光柵波導模態共振濾波器之量測...................................57
5.2.1非對稱光柵波導模態共振濾波器之量測方式...........................57
5.2.2量測結果與理論設計之比對.........................................57
5.2.3量測結果與製程之比對.............................................59
第六章 結論................................................................62
參考文獻....................................................................64
[1] 李正中,“薄膜光學與鍍膜技術”第三版
[2] R. W. Wood, ‘‘On a remarkable case of uneven distribution of light in a diffraction grating spectrum,’’ Philos. Mag. 4, 396 (1902).
[3] A. Hessel and A. A. Oliner, "A new theory of Wood's anomalies on optical gratings," Appl. Opt. 10, 1275 (1965).
[4] A. Sharon, D. Rosenblatt, and A. A. Friesem ” Resonant   grating–waveguide structures for visible and near-infrared radiation” J. Opt. Soc. Am. A 14. 11 2985 (1997).
[5] R. Magnusson, D. Shin, and Z. S. Liu. “Guided-mode resonance Brewster filter,” Opt. LETTERS 23, 612 (1998).
[6] E. B. Grann, M. G. Moharam, and D. A. Pommet, “Artificial uniaxial and biaxial dielectrics with use of two-dimensional sub-wavelength binary gratings”, J. Opt. Soc. Am. A 11, 2695 (1994).
[7]David Rosenblatt, Avner Sharon, and Asher A. Friesem, “Resonant Grating Waveguided Sturctures”, IEEE J. Quantum Electron, 33, 2038 (1997).
[8] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, "Guided-mode resonances in planar dielectric-layer diffraction gratings," J. Opt. Soc. Am. A 8, 1470 (1990).
[9] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, "Waveguide mode-induced resonances in planar diffraction gratings," in Annual Meeting, Vol. 18 of 1989 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1989), p. 117.
[10] R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022 (1992).
[11] S. S. Wang and R. Magnusson ‘‘Theory and applications of guided-mode resonance filters” Appl. Opt. 32, 2606 (1993).
[12] Christoph Kappel, Andre Selle, Mark Andreas Bader, and Gerd Marowsky ‘‘Resonant double-grating waveguide structures as inverted Fabry-Perot interferometers” J. Opt. Soc. Am. B, 21, 1127 (2004).
[13] Cedric Lenaerts, Vincent Moreau, Yves F. Lion, Yvon L. Renotte ‘‘Narrow bandwidth wavelength filter by guided mode resonance” Opt. Eng. 43, 2631 (2004).
[14] Donghyun Kim and Kieron Burke ‘‘Design of a grating-based thin-film filter for broadband spectropolarimetry” Appl. Opt. 42, 6321 (2003).
[15] Donald K. Jacob, Steven C. Dunn, and M. G. Moharam ‘‘Design consideration for narrow-band dielectric resonant grating reflection filters of finite length” J. Opt. Soc. Am. A 17, 1241 (2000).
[16] Carlos. F. R. Mateus, Michael C. Y. Huang, Yunfei Deng, Andrew R. Neureuther, Connie J. Chang-Hasnain ‘‘Ultrabroadband Mirror using low-index cladded subwavelength grating” IEEE Photo. Tech. Lett. 16, 518 (2004).
[17] S. Tibuleac and R. Magnusson ‘‘Reflection and transmission guided-mode resonace filters” J. Opt. Soc. Am A 14, 1617 (1997).
[18] Carlos. F. R. Mateus, Michael C. Y. Huang, Yunfei Deng, Andrew R. Neureuther, Connie J. Chang-Hasnain ‘‘Broad-band Mirror (1.12-1.62�慆) Using subwavelength grating” IEEE Photo. Tech. Lett. 16, 1676 (2004).
[19] Robert R. Boye and Raymond K. Kostuk ‘‘Investigation of the effect of finite grating size on the performance of guided-mode resonance filters” Appl. Opt. 39, 3649 (2000).
[20] Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Mafnusson ‘‘High-efficiency guided-mode resonance filter” Opt. Lett. 23, 1556 (1998).
[21] Donald K. Jacob, Steven C. Dunn, and M. G. Moharam“Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters”,Appl. Opt. 41, 1241 (2002).
[22] Rudolf F. Kazatinov, Charles H. Henry “Second-Order Distributed Feedback Lasers with Mode Selection Provided by Frist-order Radiation Losses”, IEEE QE-21, 144 (1985).
[23] David L. Brundrett, Elias N. Glytsis, Thomas K. Gaylord, and Jon M. Bendickson “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence”, J. Opt. Soc. Am. A 17, 1221 (2000).
[24] Y. Ding and R. Magnusson“Use of nondegenerate resonant leaky modes to fashion diverse optical spectra”, Opt. Exp. 12, 1885 (2004)
[25] Y. Ding and R. Magnusson“Resonant leaky-mode spectral-band engineering and device applications”, Opt. Exp. 12, 5661 (2004)
[26] E. B. Grann, M. G. Moharam, and D. A. Pommet, “Artificial uniaxial and biaxial dielectrics with use of two-dimensional sub-wavelength binary gratings”, J. Opt. Soc. Am. A 11, 2695 (1994)
[27] S. Sinzinger and J. Jahns, Microoptics, Wiley-Vch, New York, 166 (1999)
[28] R. C. Tyan, P. C. Sun, A. Scherer, and Yeshayahu, “Polarizing beam splitter based on anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings “, Opt. Let. 21, 761 (1996)
[29] Kaspar F.G. ”Diffraction by thick, periodically stratified grating with complex dielectric constant,” J. Opt. Soc. Am. 63, 37(1973)
[30] Knop K. “Rigorous diffraction theory for transmission phase grating with deep rectangular grooves,”J. Opt. Soc. Am. 68 120(1978)
[31] M. G.. Moharam and T. K. Gaylord, ”Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71 811(1981)
[32] Samuel T. Thurman and G. Michael Morris“Controlling the spectral response in guided-mode resonance filter design”, Appl. Opt. 42, 3225 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top