跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/16 09:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳慧慈
研究生(外文):Hui-Tzu Chen
論文名稱:探討雄性激素接受器的CAG重複、基因組型態、非隨機X染色體不活化及Xq25區域LOH的情形與乳癌發生的相關性
論文名稱(外文):Androgen receptor CAG repeats, haplotypes, non-random X chromosome inactivation, and LOH at Xq25 in relation to breast cancer risk.
指導教授:簡一治
指導教授(外文):Yi-Chih Chien
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:84
中文關鍵詞:乳癌雄性激素接受器對偶基因異結合型缺失腫瘤抑制基因X染色體不活化模式
外文關鍵詞:Breast CancerHuman Androgen Receptor GeneLinkage DisequilibriumLoss of HeterozygosityMultivariate Analysis of VarianceModified Allelic Cleavage RatioTumor Suppressor GeneX Chromosome Inactivation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本實驗的研究目的主要是探討雄性激素接受器的CAG重複、基因組型態、非隨機的X染色體不活化及Xq25區域LOH的情形與乳癌發生的相關性。研究對象包括了79位乳癌患者、39位女性肺癌、30位其他種癌症患者(包括胃癌及肝癌)以及77位未罹患癌症的女性檢體。首先進行同源基因異結合型缺失(LOH)的分析,此實驗採用了在Xq25區域的11組微衛星標誌進行分析,在分析Xq25區域LOH的情形時,若界定只要有其中一個微星標誌缺失便視為Xq25區域具有缺失,則在65乳癌患者就有46位Xq25區域具有缺失佔了相當高的比率(70.7%),相較於其他癌症病患,此缺失只佔40.0%,顯示Xq25區域的缺失與乳癌發生較相關(p=0.014),此外還發現乳癌患者中微衛星標誌主要的缺失位點為DXS1047(47.23%),這高頻率的缺失也意味者在DXS1047區域附近,極可能存在一個或一個以上的與乳癌發生相關腫瘤抑制基因。此外在探討X染色體不活化模式的部分乳癌患者傾向於非隨機的模式(乳癌患者非隨機的模式佔59.6%;其他癌症僅佔35%),這結果意味者這種非隨機的X染色體不活化模式有可能是乳癌發生的相關因素。除此之外,在Xq25區域LOH分析上,發現有八位乳癌患者(編號B44、B113、B130、B129、B307、B320、B322和B323),在採用這些微衛星標誌皆呈現LOH的情形,代表他們Xq25區域具有大片段的缺失,更湊巧的是這八位乳癌患者X染色體不活化的模式傾向於非隨機(5/7,其中一位屬於同結合型無法分析),更加顯示Xq25區域應該具有與乳癌發生相關的腫瘤抑制基因。再者針對雄性激素接受器的CAG重複及微衛星標誌的基因組型態也做進一步的分析,發現乳癌患者雄性激素接受器的CAG重複次數,相較於年齡相仿的正常人的檢體有偏高(CAG 重複次數≥21)的情形,而正常人傾向CAG重複次數較低(CAG 重複次數<21) (p=0.00069; 95% 信賴區間= -0.5~ -0.13),此外在基因組型態的研究方面中,更發現可以利用DXS8067、 DXS8098、 DXS8071,這三組對偶基因的重複片段大小,當成變數進行區別分析,可將乳癌、肺癌及正常人族群精確區分(正確率高達97.9%),意味者可以運用這些標誌作為預測癌症發生的標誌。
The goal of this project is to study the association of non-random X chromosome inactivation as well as LOH at Xq25 with breast cancer. Seventy-nine breast cancers, 39 female lung cancers, 30 other cancers (including gastric and liver cancers) and 77 healthy females were analyzed by using a panel of 11 microsatellite markers spanning Xq25 for loss of heterozygosity (LOH) analysis. LOH of at least one microsatellite locus at Xq25 was found in 46 (70.7%) of the 65 breast cancer’s tumor tissues DNA; however, the frequency was 40.0% (10/25) in other cancer’s tumor tissues DNA (p=0.014). The critical deletion region in breast cancer’s tumor DNA was around DXS1047 (47.23%). Besides, the X chromosome inactivation patterns in breast cancer tumor tissues were tending to be non-random comparing with other kind of cancers. The result indicated non-random X chromosome inactivation patterns may be a predisposing factor for the development of breast cancer, and also suggested that there might be tumor suppressor genes located on the X chromosome. Moreover, we found that the eight breast cancer tissues (B44, B113, B130, B129, B307, B320, B322, and B323) showed LOH at all the informative loci tested at the Xq25, while the other 38 showed partial (interstitial or telomeric) alterations at Xq25. Interestingly, the pattern of X chromosome inactivation of these eight breast cancers tend to be non-random (5/6). It implies that there might be at least a candidate tumor suppressor gene at Xq25 that is associated with breast cancers carcinogenesis. We estimated frequencies of AR alleles and found that the women with of two long AR alleles (>21 CAG repeats) were associated with increased risk of breast cancer, while those with two short AR alleles (<21 CAG repeats) were prone to be normal (p=0.00069; 95% confidence intervals, -0.5~ -0.13). In addition, the allelic distribution of DXS8067, DXS8098, and DXS8071 at Xq25 also provided an accurate approach to classify normal control, breast and lung cancers, which can be applied as a predicative technique.
Table of Contents
Abstract iv
Abstract (Chinese) v
Acknowledgment vi
Table of Contents vii
List of Tables ix
List of Figures x
Abbrevation xi
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Breast Cancer 2
1.3 Oncogenes and Tumor Suppressor Gene 5
1.3.1 Ocogenes 5
1.3.2 Tumor Suppressor Gene 6
1.4 Genetic Alternations 9
1.4.1 Kundson’s Two Hit Hypothesis 9
1.4.2 Loss of Heterozygosity 10
1.4.3 Genetic Alternations of the BRCA1 11
1.5 The X chromosome inactivation 13
1.6 Linkage disequilibrium 17
1.7 The Relationship between X Chromosome and Breast Cancer 19
Chapter 2 Materials and Methods 21
Chapter 3 Results 26
Chapter 4 Discussion 35
Chapter 5 Tables 41
Chapter 6 Figures 56
References 71
Allen, R.C., Zoghbi, H.Y., Moseley, A.B., Rosenblatt, H.M., and Belmont, J.W. (1992) Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. The American Journal of Human Genetics 51: 1229- 1239.
Balic, I., Graham, S.T., Troyer, D.A., Higgins, B.A., Pollock, B.H., Johnson-Pais, T.L., Thompson, I.M. and Leach, R.J. (2002) Androgen receptor length polymorphism associated with prostate cancer risk in Hispanic men. The Journal of Urology 168: 2245- 2248.
Bennett, C.L., Price, D.K., Kim, S., Liu, D., Jovanovic, B.D., Nathan, D., Johnson, M.E., Montgomery, J.S., Cude, K., Brockbank, J.C., Sartor, O., and Figg, W.D. (2002) Racial variation in CAG repeat lengths within the androgen receptor gene among prostate cancer patients of lower socioeconomic status. Journal of Clinical Oncology 20: 3599- 3604.
Bishop, J.M. (1983) Cellular oncogenes and retroviruses. Annual Review of Biochemistry 52: 301- 354.
Bowcock, A.M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J.R., and Cavalli-Sforza, L.L. (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455- 457.
Brinkmann, A.O., Faber, P.W., van Rooij, H.C., Kuiper, G.G., Ris, C., Klaassen, P., van der Korput, J.A., Voorhorst, M.M., van Laar, J.H., and Mulder, E. (1989) The human androgen receptor: domain structure, genomic organization and regulation of expression. Journal of Steroid Biochemistry & Molecular Biology 34: 307- 310.
Brown, C.J. (1996) Role of the X chromosome in cancer. Journal of the National Cancer Institute 88: 480- 482.
Buchanan, G., Yang, M., Cheong, A., Harris, J.M., Irvine, R.A., Lambert, P.F., Moore, N.L., Raynor, M., Neufing, P.J., Coetzee, G.A., and Tilley, W.D. (2004) Structural and functional consequences of glutamine tract variation in the androgen receptor. Human Molecular Genetics 13: 1677- 1692.
Buller, R.E., Sood, A.K., Lallas, T., Buekers, T., and Skilling, J.S. (1999) Associated between nonrandom X-chromosome inactivation and BRCA1 mutation in germline DNA of patients with ovarian cancer. Journal of the National Cancer Institute 91: 339- 346.
Callahan, R., Cropp, C., Sheng, Z.M., Merlo, G., Steeg, P., Liscia, D., and Lidereau, R. (1993) Definition of regions of the human genome affected by loss of heterozygosity in primary human breast tumors. Journal of Cellular Biochemistry Supplement 17G: 167- 172.
Callahan, R. (1998) Somatic mutations that contribute to breast cancer. Biochemical Society Symposium 63: 211- 221.
Casey, G. (1997) The BRCA1 and BRCA2 breast cancer genes. Current Opinion in Oncology 9: 88- 93.
Chene. L., Giroud, C., Desgrandchamps, F., Boccon-Gibod, L., Cussenot, O., Berthon, P., and Latil, A. (2004) Extensive analysis of the 7q31 region in human prostate tumors supports TES as the best candidate tumor suppressor gene. International Journal of Cancer 111: 798- 804.
Chen, S.T., Chen, R.A., Kuo, S.J., and Chien, Y.C. (2003) Mutational screening of breast cancer susceptibility gene 1 from early onset, bi-lateral, and familial breast cancer patients in Taiwan. Breast Cancer Research and Treatment 77: 133- 143.
Choi, C., Cho, S. H., Horikawa, I., Berchuck, A., Wang, N., Cedrone, E., Jhung, S. W., Lee, J. B., Kerr, J., ChenevixTrench, G., Kim, S. Y., Barrett, J. C., and Koi, M. (1997). Loss of heterozygosity at chromosome segment Xq25- 26.1 in advanced human ovarian carcinomas. Genes, chromosomes and cancer 20: 234- 242.
Choong, C.S., Kemppainen, J.A., Zhou, Z.X. and Wilson, E.M. (1996) Reduced androgen receptor gene expression with first exon CAG repeat expansion. Molecular Endocrinology 10: 1527- 1535.
Couch, F.J., DeShano, M.L., Blackwood, M.A., Calzone, K., Stopfer, J., Campeau, L., Ganguly, A., Rebbeck, T., and Weber, B.L. (1997) BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. New England Journal of Medicine 336: 1409- 1415.
Clarke, J.T., Greer, W.J., Strasberg, P.M., Pearce, R.D., Skomorowski, M.A., and Ray, P.N. (1991) Hunter disease (mucopolysaccharidosis type II) associated with unbalanced inactivation of the X chromosome in a karyotypically normal girl. American Journal of Human Genetics 49: 289- 297.
Dean, M., Stephens, J.C., Winkler, C., Lomb, D.A., Ramsburg, M., Boaze, R., Stewart, C., Charbonneau, L., Goldman, D., Albaugh, B.J. (1994) Polymorphic admixture typing in human ethnic populations. The American Journal of Human Genetics 55: 788- 808.
Deng, C. (2006) BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Research 34: 1416- 1426.
Destro-Bisol, G., Maviglia, R., Caglia, A., Boschi, I., Spedini, G., Pascali, V., Clark, A., and Tishkoff, S. (1999) Estimating European admixture in African Americans by using microsatellites and a microsatellite haplotype (CD4/Alu). Human Genetics 104: 149- 157.
Devilee, P., and Cornelisse, C.J. (1994) Somatic genetic changes in human breast cancer. Biochimica et Biophysica Acta 1198: 113- 130.
Dunning, A.M., McBride, S., Gregory, J., Durocher, F., Foster, N.A., Healey, C.S., Smith, N., Pharoah, P.D., Luben, R.N., Easton, D.F., and Ponder, B.A. (1999) No association between androgen or vitamin D receptor gene polymorphisms and risk of breast cancer. Carcinogenesis 20: 2131- 2135.
Faro, M. L., Randel, E., Gurley, K.E., Roberts, J.M., and Kemp, C.J. (1998) The murine gene p27KIP1 is haplo-insufficient for tumour suppression. Nature 396: 177- 180.
Ford, D., Easton, D.F., Stratton, M., Narod, S., Goldgar, D., Devilee, P., Bishop, D.T., Weber, B., Lenoir, G., Chang-Claude, J., Sobol, H., Teare, M.D., Struewing, J., Arason, A., Scherneck, S., Peto, J., Rebbeck, T.R., Tonin, P., Neuhausen, S., Barkardottir, R., Eyfjord, J., Lynch, H., Ponder, B.A., Gayther, S.A., and Zelada-Hedman, M. (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. The American Journal of Human Genetics 62: 676- 689.
Friedman, L.S., Ostermeyer, A., Szabo, C.I., Dowd, P., Lynch, E.D., Rowell, S.E., and King, M.C. (1994) Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. Nature Genetics 8: 399- 404
Gelmann, E.P. (2002) Molecular biology of the androgen receptor. Journal of Clinical Oncology 20: 3001- 3015.
Goddard, K.A., Hopkins, P.J., Hall, J.M., and Witte, J.S. (2000) Linkage disequilibrium and allele-frequency distributions for 114 single-nucleotide polymorphisms in five populations. The American Journal of Human Genetics 66: 216- 234.
Goldin, L.R., and Weeks, D.E. (1993) Two-locus models of disease: comparison of likelihood and nonparametric methods. The American Journal of Human Genetics 53: 908- 915.
Habuchi, T., Yoshida, O., and Knowles, M.A. (1997) A novel candidate tumour suppressor locus at 9q32-33 in bladder cancer localization of the candidate region within a single 840 kb YAC. Human Molecular Genetics 6: 913- 919.
Haiman, C.A., Brown, M., Hankinson, S.E., Spiegelman, D., Colditz, G.A., Willett, W.C., Kantoff, P.W., and Hunter, D.J. (2002) The androgen receptor CAG repeat polymorphism and risk of breast cancer in the Nurses’ Health Study. Cancer Research 62:1045–1049.
Hanahan, D. and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100: 57- 70.
Hartikainen, J.M., Tuhkanen, H., Kataja, V., Dunning, A.M., Antoniou, A., Smith, P., Arffman, A., Pirskanen, M., Easton, D.F., Eskelinen, M., Uusitupa, M., Kosma, V.M., and Mannermaa, A. (2005) An autosome-wide scan for linkage disequilibrium-based association in sporadic breast cancer cases in eastern Finland: three candidate regions found. Cancer Epidemiol Biomarkers & Prevention 14: 75- 80.
Hartmann, C., John, A.L., Klaes, R., Hofmann, W., Bielen, R., Koehler, R., Janssen, B., Bartram, C.R., Arnold, N., and Zschocke, J. (2004) Large BRCA1 gene deletions are found in 3% of German high-risk breast cancer families.
Humun Mutation 24: 1- 8.
Hastbacka, J., de la Chapelle, A., Kaitila, I., Sistonen, P., Weaver, A., and Lander, E. (1992) Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nature Genetics 2: 204- 211.
Heard, E., Clerc, P., and Avner, P. (1997) X-chromosome inactivation in mammals. Annual Review of Genetics 31: 571-610


Hickey, T., Chandy, A., and Norman, R.J. (2002) The androgen receptor CAG repeat polymorphism and X-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism 87: 161- 165.
Hsing, A.W., Gao, Y.T., Wu, G., Wang, X., Deng, J., Chen, Y.L., Sesterhenn, I.A., Mostofi, F.K., Benichou, J. and Chang, C. (2000) Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case-control study in China. Cancer Research 60: 5111- 5116.
Inoue, R., Fukutomi, T., Ushijima, T., Matsumoto, Y., Sugimura, T., and Nagao, M. (1995) Germline mutation of BRCA1 in Japanese breast cancer. Cancer Research 55: 3521- 3524.
Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Smigal, C., and Thun, M.J. (2006) Cancer statistics, 2006. A Cancer Journal for Clinicians 56: 106- 130.
Jorde, L.B., Rogers, A.R., Bamshad, M., Watkins, W.S., Krakowiak, P., Sung, S., Kere, J., and Harpending, H.C. (1997) Microsatellite diversity and the demographic history of modern humans. Proceedings of the National Academy of Sciences of the USA 94: 3100- 3103.
Katagiri, T., Emi, M., Ito, I., Kobayashi, K., Yoshimoto, M., Iwase, T., Kasumi, F., Miki, Y., Skolnick, M.H., and Nakamura, Y. (1996) Mutations in the BRCA1 genes in Japanese breast cancer patients. Human Mutant 7: 334- 339.
Keith, D.H., Singer-Sam, J., and Riggs, A.D. (1986) Active X chromosome DNA is unmethylated at eight CCGG sites clustered in a guanine-plus-cytosine-rich island at the 5' end of the gene for phosphoglycerate kinase. Molecular and Cellular Biology 6: 4122- 4125.
Kerem, B., Rommens, J.M., Buchanan, J.A., Markiewicz, D., Cox, T.K., Chakravarti, A., Buchwald, M., and Tsui, L.C. (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245: 1073- 1080.
King, C., Kraus, M., and Aaronson, S. (1985) Amplification of a novel v-ErbB-2 related gene in human mammary carcinoma. Science 229: 974- 976.
Knudson, A.G. Jr. (1971) Mutation and Cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences 68: 820- 823.
Knudson, A. G. Jr. (1985) Hereditary cancer, oncogenes and antioncogenes. Cancer Research 45: 1437- 1443.
Knudson, A.G. Jr. (1993) Antioncogenes and human cancer. The Proceedings of the National Academy of Sciences of the United States of America 90: 10914- 10920.
Krainer, M., Silva-Arrieta, S., FitzGerald, M.G., Shimada, A., Ishioka, C., Kanamaru, R., MacDonald, D.J., Unsal, H., Finkelstein, D.M., Bowcock, A., Isselbacher, K.J., and Haber, D.A. (1997) Differential contributions of BRCA1 and BRCA2 to early-onset breast cancer. New England Journal of Medicine 336: 1416- 1421.
Kruglyak, L., Daly, M.J., Reeve-Daly, M.P., and Lander, E.S. (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. The American Journal of Human Genetics 58: 1347- 1363.
Kruglyak, L. (1999) Prospects of whole-genome linkage disequilibrium mapping of common disease genes. Nature Genetics 22: 139- 144.
Kubota, T., Oga, S., Ohashi, H., Iwamoto, Y., and Fukushima, Y. (1999) Borjeson-Forsman-Lehmann syndrome in a woman with skewed X-chromosome inactivation. American Journal of Human Genetics 26: 258- 261.


Kristiansen, M., Knudsen, G.P., Maguire, P., Margolin, S., Pedersen, J., Lindblom, A., and Orstavik, K.H. (2005) High incidence of skewed X chromosome inactivation in young patients with familial non-BRCA1/BRCA2 breast cancer. Journal of Medical Genetics 42: 877- 880.
Lasko, D., Cavenee, W., and Nordenskjold, M. (1991) Loss of constitutional heterozygosity in human cancer. Annual Review of Genetics 25: 281- 314.
La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E., and Fischbeck, K.H. (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352: 77- 79.
Lee, N., Daly, M.J., Delmonte, T., Lander, E.S., Xu, F., Hudson, T.J., Mitchell, G.A., Morin, C.C., Robinson, B.H., and Rioux, J.D. (2001) A genomewide linkage-disequilibrium scan localizes the Saguenay-Lac-Saint-Jean cytochrome oxidase deficiency to 2p16. The American Journal of Human Genetics 68: 397- 409.
Liang, Y., Robinson, D.F., Dennig, J., Suske, G., and Fahl, W.E. (1996) Transcriptional regulation of the sis/PDGF-B gene in human osteosarcoma cells by the Sp family of transcription factors. Journal of Biological Chemistry 271:11792- 11797.
Li, S.S., Tseng, H.M., Yang, T.P., Liu, C.H., Teng, S.J., Huang, H.W., Chen, L.M., Kao, H.W., Chen, J.H., Tseng, J.N., Chen, A., Hou, M.F., Huang, T.J. Chang, H.T., Mok, K.T., and Tasi, J.H. (1999) Molecular characterization of germline mutations in the BRCA1 and BRCA2 genes from breast cancer families in Taiwan. Human Genetics 104: 201- 204.
Lobaccaro, J.M., Lumbroso, S., Belon, C., Galtier-Dereure, F., Bringer, J., Lesimple, T., Heron, J.F., Pujol, H., and Sultan, C. (1993) Male breast cancer and the androgen receptor gene. Nature Genetics 5: 109- 110.
Loeb, L.A. (1994) Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Research 54: 5059- 5063.
Lyon, M.F. (1961) Gene action in the X-chromosome of the mouse (Mus musculus) Nature 190: 372- 373.
Macleod, K. (2000) Tumor suppressor gene. Current Opinion in Cell Biology 10: 81- 93.
Malone, K.E., Daling, J.R., Thompson, J.D., O’Brien, C.A., Francisco, L.V., and Ostrander, E.A. (1998) BRCA1 mutations and breast cancer in the general population. Journal of the American Medical Association 279: 922- 929.
Matsushima, M., Kobayashi, K., Emi, M., Saito, H., Saito, J., Suzumori, K., and Nakamura, Y. (1995) Mutations analysis of the BRCA1 gene in 76 Japanese ovarian cancer patients: four germline mutations, but no evidence of somatic mutation. Human Molecular Genetics 4: 1953-1956.
Mercapide, J., Zhang, S.Y., Fan, X., Furió-Bacete, V., Schneider, J., López de la Osa, I., Patchefsky, A.S., Klein-Szanto, A.J.P., and Castresana, J.S. (2002) CCND1- and ERBB2-gene deregulation and PTEN mutation analyses in invasive lobular carcinoma of the breast. Molecular Carcinogenesis 35: 6- 12.
Meuth, M. (1990) The structure of mutation in mammalian cells. Biochimica et Biophysica Acta 1032: 1- 17.
Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P., A., Harshman, K., Tavtigian, S., Liu, Q., Cochran, C., Bennett, L., M., Ding, W., Bell, R., Rosenthal, J., Hussey, C., Tran, T., McClure, M., Frye, C., Hattier, T., Phelps, R., Haugen-Strano, A., Katcher, H., Yakumo, K., Gholami, Z., Shaffer, D., Stone, S., Bayer, S., Wray, C., Bogden, R., Dayananth, P., Ward, J., Tonin, P., Narod, S.,Bristow, P.K., Norris, F.H., Helvering, L., Morrison, P., Rosteck, P., Lai, M., Barrett, J.C., Lewis, C., Neuhausen, S., Cannon-Albright, L., Goldgar, D., Wiseman, R., Kamb, A. and Skolnick, M.H. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266: 66- 71.
Nauhausen, S.L., and Marshal, C.J. (1994) Loss of heterozygosity in familial tumors from three BRCA1-linked kindreds. Cancer Research 54: 6069- 6072.
Nelson, K.A., and Witte, J.S. (2002) Androgen receptor CAG repeats and prostate cancer. American Journal of Epidemiology 155: 883- 890.
Newton, M.A., and Lee, Y. (2000) Inferring the location and effect of tumor suppressor genes by instability-selection modeling of allelic-loss data. Biometrics 56: 1088- 1097.
Nisen, P.D., and Waber, P.G. (1989) Nonrandom X chromosome DNA methylation patterns in hemophiliac females. Journal of Clinical Investigation 83: 1400- 1403.
Orborne, R. J., and Hamshere, M. G. (2000) A genome-wide map showing common regions of loss of heterozygosity/allelic imbalance in breast cancer. Cancer Research 60: 3706- 3712.
Parolini, O., Ressmann, G., Hass, O.A., Pawlowsky, J., Gadner, H., Knapp, W., and Holter, W. (1998) X-linked Wiskott-Aldrich syndrome in a girl. New England Journal of Medicine 338: 291- 295.
Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. (2001) Estimating the world cancer burden: Globocan 2000. International Journal of Cancer 94:153-156.
Peto, J., Collins, N., Barfoot, R., Seal, S., Warren, W., Rahman, N., Easton, D.F., Evans, C., Deacon, J., and Stratton, M.R. (1999) Prevalence of BRCA1 and BRCA2 gene mutation in patients with early-onset breast cancer. Journal of the National Cancer Institute 91: 943- 949.
Pestonjamasp, P.H. and Mittra, I. (2000) Analysis of BRCA1 involvement in breast cancer in Indian women. Journal of Biosciences 25: 19- 23.
Piao, Z., Lee, K.S., Kim, H., Perucho, M., and Malkhosyan, S. (2001) Identification of novel deletion regions on chromosomes 2q and 6p in breast carcinomas by amplotype analysis. Genes, Chromosomes and Cancer 30: 113- 122.
Piao, Z., and Malkhosyan, S.R. (2002) Frequent loss Xq25 on the inactive X chromosome in primary breast carcinomas is associated with tumor grade and axillary lymph node metastasis. Genes Chromosomes and Cancer 33: 262- 269.
Ramal, L.M., Maleno, I., Cabrera, T., Collado, A., Ferron, A., Lopez-Nevot, M.A., and Garrido, F. (2000) Molecular strategies to define HLA haplotype loss in microdissected tumor cells. Human Inmunology 61: 1001- 1012.
Ramus, S.J., Kote-Jarai, Z., Friedman, L.S., van der Looij, M., Gayther, S.A., Csokay, B., Ponder, B.A.J., and Olah, E. (1997) Analysis of BRCA1 and BRCA2 mutations in hungarian families with breast or breast-ovarian cancer. The American Journal of Human Genetics 60: 1242- 1246.
Reich, D.E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P.C., Richter, D.J., Lavery, T., Kouyoumjian, R., Farhadian, S.F., Ward, R., and Lander, E.S. (2001) Linkage disequilibriumin the human genome. Nature 411: 199- 204.
Risch, N., and Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science 273: 1516- 1517.
Rodriguez, G., Bilbao, C., Ramirez, R., Falcon, O., Leon, L., Chirino, R., Falcon, O. Jr., Diaz, B.P., Rivero, J.F., Perucho, M., Diaz-Chico, B.N., and Diaz-Chico, J.C. (2006) Alleles with short CAG and GGN repeats in the androgen receptor gene are associated with benign endometrial cancer. International Journal of Cancer 118: 1420- 1425.
Ross, J. S., and Fletcher, J. A. (1999) The HER-2/neu oncogene: prognostic factor, predictive factor and target for therapy. Seminars in Cancer Biology 9: 125- 138.
Santarosa, M., Bidoli, E., Gallo, A., Steffan, A., Boiocchi, M., and Viel, A. (2002) Polymorphic CAG repeat length within the androgen receptor gene: identification of a subgroup of patients with increased risk of ovarian cancer. Oncology Reports 9: 639- 644.
Sasaki, M., Sakuragi, N., and Dahiya, R. (2003) The CAG repeats in exon 1 of the androgen receptor gene are significantly longer in endometrial cancer patients. Biochemical and Biophysical Research Communications 305: 1105- 1108.
Schaffner, S.F. (2004) The X chromosome in population genetics. Nature Reviews Genetics 5: 43- 51.
Schlotter, C.M., Vogt, U., Bosse, U., Mersch, B., and Wassmann, K. (2003) C-myc, not HER-2/neu, can predict recurrence and mortality of patients with node-negative breast cancer. Breast Cancer Research 5: 30- 36.
Seki, Y., Suico, M.A., Uto, A., Hisatsune, A., Shuto, T., Isohama, Y., and Kai, H. (2002) The ETS transcription factor MEF is a candidate tumor suppressor gene on the X chromosome. Cancer Research 62: 6579- 6586.
Seo, M.Y., Rha, S.Y., Yang, S.H., Kim, S.C., Lee, G.Y., Park, C.H., Yang, W.I., Ahn, J.B., Park, B.W., and Chung, H.C. (2004) The pattern of gene copy number changes in bilateral breast cancer surveyed by cDNA microarray-based comparative genomic hybridization. International Journal of Molecular Medicine 13: 17- 24.
Serova, O.M., Mazoyer, S., Puget, N., Dubois, V., Tonin, P., Shugart, Y.Y., Goldgar, D., Narod, S.A., Lynch, H.T., and Lenoir, G.M. (1997) Mutations in BRCA1 and BRCA2 in Breast Cancer Families: Are There More Breast Cancer-Susceptibility Genes?The American Journal of Human Genetics 60: 486-495.
Shattuck-Eidens, D., McClure, M., Simard, J., Labrie, F., Narod, S., Couch, F., Hoskins, K., Weber, B., Castilla, L., Erdos, M. (1995) A collaborative survey of 80 mutations in the BRCA1 breast and ovarian cancer susceptibility gene. Journal of the American Medical Association 273: 535- 541.


Simard, J., Tonin, P., Durocher, F., Morgan, K., Rommens, J., Gingras, S., Samson, C., Leblanc, J-F., Belanger, C., Dion, F., Liu, Q., Skolnick, M., Goldgar, D., Shattuck-Eidens, D., Labrie, F., and Narod, S.A. (1994) Common origins of BRCA1 mutations in Canadian breast and ovarian cancer families. Nature Genetics 8: 392- 398.
Smith, S.A., Easton, D.F., Evans, D.G., and Ponder, B.A. (1992) Allele losses in the region 17q12-21 in familial breast and ovarian cancer involve the wild-type chromosome. Nature Genetic 2: 128- 131.
Snarey, A., Thomas, S., Schneider, M.C., Pound, S.E., Barton, N., Wright, A.F., Germino, G.G., Somlo, S., Harris, P.C., Reeders, S.T., and Frischauf, A-M. (1994) Linkage disequilibrium in the region of the autosomal dominant polycystic kidney disease gene (PKD1). The American Journal of Human Genetics 55: 365- 371.
Steven, A.N. and William, D. F. (2004) BRCA1 and BRCA2: 1994 and beyond. Nature Reviews Cancer 4: 665- 676.
Struewing, J.P., Pineda, M.A., Sherman, M.E., Lissowska, J., Brinton, L.A., Peplonska, B., Bardin-Mikolajczak, A., and Garcia-Closas, M. (2006) Skewed X chromosome inactivation and early-onset breast cancer. Journal of Medical Genetics 43: 48- 53.
Suter, N.M., Malone, K.E., Daling, J.R., Doody, D.R., and Ostrander, E.A. Androgen receptor (CAG)n and (GGC)n polymorphisms and breast cancer risk in a population-based case-control study of young women. (2003) Cancer Epidemiology Biomarkers & Prevention 12: 127- 3523.
Terry, K.L., De Vivo, I., Titus-Ernstoff, L., Shih, M.C., and Cramer, D.W. (2005) Androgen receptor cytosine, adenine, guanine repeats, and haplotypes in relation to ovarian cancer risk. Cancer Research 65: 5974- 5981.


Varilo, T., Savukoski, M., Norio, R., Santavuori, P., Peltonen, L., and Jarvela, I. (1996) The age of human mutation: genealogical and linkage disequilibrium analysis of the CLN5 mutation in the Finnish population. The American Journal of Human Genetics 58:506 - 512.
Visapaa, I., Salonen, R., Varilo, T., Paavola, P., and Peltonen, L. (1999) Assignment of the locus for Hydrolethalus syndrome to a highly restricted region on 11q23-25. The American Journal of Human Genetics 65: 1086- 1095.
Vogelstein, B., Fearon, E.R., Hamilton, S.R., and Feinberg, A.P. (1985) Use of restriction fragment length polymorphisms to determine the clonal origin of human tumors. Science 227: 642- 645.
Wang, X.W., Lin, X., Klein, C.B., Bhamra, R.K., Lee, Y.W., and Costa, M. (1992) A conserved region in human and Chinese hamster X chromosomes can induce cellular senescence of nickel-transformed Chinese hamster cell lines. Carcinogenesis 13: 555- 561.
Weinberg, R.A. (1991) Tumor suppressor genes. Science 254: 1138- 1146.
Wooster, R., Bignell, G., Lancaster, J., Swift, S., Seal, S., Mangion, J., Collins, N., Gregory, S., Gumbs, C., and Micklem, G. (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378: 789- 792.
Zhu, X., Daffada, A.A., Chan, C.M., and Dowsett, M. (1997) Identification of an exon 3 deletion splice variant androgen receptor mRNA in human breast cancer. International Journal of Cancer 72: 574- 580.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊