跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 15:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐郁雯
研究生(外文):Yu-Wen Hsu
論文名稱:鹽分逆境對不同耐性水稻懸浮細胞多元胺生合成基因表現之影響
論文名稱(外文):The Gene Expression of Polyamine Biosynthesis Enzymes in the Suspension Cells of Salt-Tolerant and Salt-Sensitive Rice (Oryza sativa L.) Cultivars under Salt Stress.
指導教授:林忠毅林忠毅引用關係簡一治
指導教授(外文):John-Yee LinYi-Chih Chien
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:81
中文關鍵詞:ADCODCPutSAMDCSPDSSpd
外文關鍵詞:arginine decarboxylaseornithine decarboxylasePutrescineS-adenosylmethionine decarboxylaseSpermidine synthaseSpermidine
相關次數:
  • 被引用被引用:4
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
鹽分逆境往往會造成植物內生性多元胺的累積,但對多元胺生合成基因的表現則不甚了解。本實驗利用鹽敏感型水稻台農67號 (Oryza sativa L. cv. Tainung 67) 及耐鹽型水稻台中178號 (Oryza sativa L. cv. Taichung 178)兩種耐性不同的稉稻( japonica type )懸浮細胞作為實驗材料,探討在150 mM NaCl鹽分逆境下多元胺生合成基因的表現及其含量變化,以了解水稻在鹽逆境下可能的生理變化及耐鹽機制。
根據本實驗的結果認為鹽分逆境能有效增加兩種耐性不同的水稻adc的表現量,因而增進Putrescine(Put)的累積;同時耐鹽性水稻能在逆境下維持較高及較久的adc表現量,推測是其抵抗鹽逆境的機制之ㄧ。至於samdc則在兩種水稻品系遭遇鹽分逆境下都有明顯表現,表示合成spermidine(Spd)所需的aminopropyl group供給無虞。然而台中178號在鹽逆境下並未提高Spd的含量,台農67號則在遭遇鹽分逆境時,能誘導spd syn的基因表現而增加Spd的含量。由於本實驗是以懸浮細胞當做材料,但水稻懸浮細胞基因的表現與植株的表現並無直接相關性,所以可能因此顯現出與過去研究上較不相同的實驗結果,也可能是水稻懸浮細胞的多元胺生合成相關基因有著不同的調控機制。根據上述實驗結果推測samdc基因的表現在Spd累積上並未扮演關鍵角色。
另外,由實驗中亦可證實,odc存在於水稻的genomic DNA中。然而水稻遭受鹽分逆境時卻傾向adc的表現,但由於無法偵測到odc的表現情況,因此推測逆境不易誘導odc表現。
The effects of salt stress (150 mM NaCl) on endogenous levels of polyamines were studied in the suspension rice cell lines of salt-tolerant (Oryza sativa L. cv. Taichung 178) and salt-sensitive (Oryza sativa L. cv. Tainung 67) cultivars. The changes in levels of polyamines and in transcripts of polyamine metabolic enzymes under salt stress were investigated. Salt stress significantly increased the levels of putrescine(Put) and adc mRNA in both rice cultivars measured along with time. The levels of spermidine(Spd) as well as those of spd syn mRNA were significantly increased in the salt-sensitive cultivar ( Tainung 67)。However, no significant changes in the salt-tolerant cultivar ( Taichung 178) under saline conditions. These results suggested that different suspension cell lines of rice were regulated differently under salt stress. However, gene expression of samdc revealed no significant effect on accumulation of Spd. Besides, although I could detect odc genes in both rice genomes, no odc cDNA were detected in both cultivars, suggesting that odc gene expression might be irrelevant to tolerance toward salt stress.
目錄
縮寫表 ……………………………………………………..1
英文摘要 …………………………………………………..2
中文摘要 …………………………………………………..3
壹、前言 …………………………………………………..5
貳、前人研究 ………………………………………………7
一. 鹽分逆境對植物的危害 ……………………………………7
二. 植物抵抗鹽分逆境的機制 …………………………………8
三. 多元胺的功能及代謝途徑 ………………………………10
四. 鹽分逆境下植物的多元胺生合成酵素表現………………13
参、材料與方法 ………………………………………………….19
肆、結果 ………………………………………………………….30
一. 鹽分逆境對不同耐鹽性水稻懸浮細胞鮮重之影響 ……30
二.鹽分逆境下不同耐鹽性水稻懸浮細胞多元胺含量變化…30
三. 鹽分逆境下不同耐鹽性水稻懸浮細胞的多元胺生合成基因表現 ………………………………………………………31
伍、討論 ……………………………………………………………54
一. 鹽分逆境對不同耐性的水稻懸浮細胞鮮重的影響 ……54
二.鹽分逆境下不同耐鹽性水稻懸浮細胞的多元胺含量變化 55
三. 鹽分逆境下不同耐鹽性水稻懸浮細胞的多元胺生合成基因表現 ………………………………………………………59
陸.結論 ……………………………………………………………69
柒.參考文獻 ………………………………………………………70
捌.附錄 ……………………………………………………………...79
附錄一 、多元胺在植物中的代謝途徑 .........82
附錄二、各基因之引子(primer)序列 .........83
附錄三 、N6D培養基成分 …………………………84
李佳蕙。1992。水稻懸浮細胞耐鹽性之探討。國立台灣大學農藝學研究所碩士論文。
林傳琦。2000。氯化鈉對水稻幼苗生理作用影響之研究。國立台灣大學農藝學研究所博士論文。
陳逸凡。2004。鹽逆境下適應性水稻懸浮細胞多元胺與脯胺酸含量變化及其代謝途徑相關性。國立彰化師範大學生物學研究所碩士論文。
陳香吟。2005。白蝦(LitoPenaeus Vannamei)蛻殼抑制荷爾蒙分子研究:基因選殖、重組蛋白表現與退殼周期中基因表現之變化。國立彰化師範大學生物學研究所碩士論文。
揚遜謙。1975。水稻品種耐鹽性之研究。中華農業研究。第二十四卷:第三期:13-23。
Alvarez, L., Tomaro, M.L. and Benavides, M. P. (2003) Changes in polyamines, proline and ethylene in sunflower calluses treated with NaCl. Plant Cell,Tissue Organ Cult. 74:51-59.

Atsushi, N. and Hakime, I. (2000) Polyamine composition and expression of genes related to polyamine biosynthesis in an aphid endosymbiont, Buchnera. Appl. Environ. Microbiol. 66(8): 3305-3309.

Aziz, A. and Larher, F. 1995. Changes in polyamines titers associated with the proline response and osmotic adjustment of rape leaf discs submitted to osmotic stresses. Plant Sci. 112: 175-186.

Bajji, M., Kinet, J.M. and Lutts, S. (1998) Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant Sci. 137: 131-142.

Basu, R., Mitra, N. and Ghosh, B. (1988) Salinity results in polyamine accumulation in early rice (Oryza sativa L.) seedlings. Aust. J. Plant Physiol. 15: 777-786.

Basu, R. and Ghosh, B. (1991) Polyamines in various rice ( Oryza saiva L.) genotypes with respect to sodium chloride salinity. Physiol. Plant. 82: 575-581.

Bouchereau, A., Aziz, A. and Larher, F. (1999) Polyamines and environmental challenge: recent development. Plant Sci. 140: 103-125.

Bubner, B. and Baldwin, I.T. (2004) Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep. 23: 263-271.

Burtin, D. and Michael, A. J. (1997) Overexpression of arginine decarboxylase in transgenic plants. Biochem. J. 325: 331-337.

Capell, T., Escobar, C., Liu, H., Burtin, D., Lepri, O. and Christou, P. (1998) Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor. Appl. Genet. 97: 246-254.

Capell, T., Bassie L., Topsom, L., Hitchin, E. and Christou, P. (2000) Simultaneous reduction of the activity of two related enzymes, involved in early steps of the polyamine biosynthetic pathway, by a single antisense cDNA in transgenic rice. Mol. Gen. Genet. 264: 470-476.

Chattopadhyay, M.K., Gupta, S., Sengupta, B. and Ghosh, B. (1997) Expression of arginine decarboxylase in indica (Oryza saiva L.) cultivars as affected by salinity stress. Plant Mol. Biol. 34: 477-483.

Das, S., Bose, A. and Ghosh, B. (1995) Effect of salt stress on polyamine metabolism in Brassica Campestris. Phytochem. 39: 283-285.

Erdei, L., Trivedi, S., Takeda, K and Matsunoto, H. (1990) Effects of osmotic and salt stress on the accumulation of polyamines in leaf segments from wheat varieties differing in salt and drought tolerance. J. Plant Physiol. 137:165-168.

Friedman, R., Altman, A. and Leven, N. (1989) The effect of salt stress on polyamine biosynthesis and content in mung bean plants and in halophytes. Physiol. Plant. 76: 303-308.

Ginzinger, D. G. (2002) Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp. Hematol. 30: 503-512.

Greenway, H. and R. Munns. (1980) Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31: 149-190.

Hanfrey, C., Sommer, S., Mayer, M.J., Burtin, D. and Michael, A.J. (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J. 27(6): 551-560.

Kasinathan, V. and Wingler, A. (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiol. Plant. 121: 101-107.

Kasukable, Y., He, L., Nada, K., Misawa, S., Ihara, I. and Tachibana, S. (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stress and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol. 45(6): 712-722.

Krishnamurthy, R. and Bhagwat, K.A. (1989) Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol. 91: 500-504.

Krishnamurthy, R. (1991) Amelioration of salinity effect in salt tolerance rice (Oryza saiva L.) by foliar application of putrescine. Plant Cell Physiol. 32(5): 699-703.

Kumar, A., Altabella, T., Taylor, M. A. and Tiburcio, A. F. (1997) Recent advances in polyamine research. Trends Plant Sci. 2: 124-130.

Kumria, R., and Rajam, M.V. (2002) Alteration in polyamine titers during Agrobacterium-mediated transformation of indica rice with ornithine decarboxylase gene affects plant regeneration potential. Plant Sci. (162): 769-777.

Lepri, O., Bassie, L., Safwat, G., Thu-Hang, P., Trung-Nghia, P, Hölttä, E., Christon, P., and Capell, T. (2001) Over-expression of a cDNA for human ornithine decarboxylase in transgenic rice plants alters the polyamine pool in a tissue-specific manner. Mol. Gen. Genet. 266: 303-312.

Li, Z.Y. and Chen, S.Y. (2000) Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses. Theor. Appl. Genet. 100: 782-788.

Livak K. J. and Schmittgen. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402-408.

Maiale, S., Sánchez D.H., Guirado, A., Vidal, A. and Ruiz, O.A. (2004) 1Spermine accumulation under salt stress. J. Plant Physiol. 161: 35-42.

Meloni, D.A. Oliva, M.A. Ruiz, H.A. and Martinez, C.A. (2001) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J. Plant Nutr. 24: 599-612.

Noury, M., Bassie, L., Lepri, O., Kurek, I., Christou, P. and Capell, T. (2000) A transgenic rice cell lingeage expressing the oat arginine decarboxylase (adc) cDNA constitutively accumulates putrescine in callus and seeds but not in vegetative tissues. Plant Mol. Biol. 43: 537-544.

Pandey, S., Ranade, S.A., Nagar, P.K. and Kumar, N. (2000) Role of polyamines and ethylene as modulators of plant senescence. J. Biosci. 25(3): 291-299.

Roy, M. and Wu, R. (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci. 160: 869-875.

Roy, M. and Wu, R. (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enchances sodium chloride-stress tolerance. Plant Sci. 163: 987-992.

Sairam, R.K. and Tyagi, A. (2004) Physiology and molecular biology of salinity stress tolerance in plants. Current Sci. 86(3): 407-421.

Sanchez, D.H., Cuevas, J.C., Chiesa, M. A. and Ruiz, O. A. (2005) Free spermidine and spermine content in Lotus glaber under long-term salt stress. Plant Sci. 168: 541-546.

Santa-Cruz, A., Acosta, M., Rus, A. and Bolarin, M. C. (1997) Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiol. Plant. 101: 341-346.

Santa-Cruz, A., Perez-Alfocea, F., Caro, M. and Acosta, M. (1998) Polyamines as short-term salt tolerance traits in tomato. Plant Sci. 138: 9-16.

Santa-Cruz, A., Acosta, M., Rus, A. and Bolarin M. C. (1999) Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol. Biochem. 37(1): 65-71.

Scaramagli, S., Biondi, S., Lenone, A., Grillo, S. and Torrigiani, P. (2000) Acclimation to low water potential in potato cell suspension cultures leads to changes in putrescine metabolism. Plant Physiol. Biochem. 38(4): 345-351.

Shoeb, F., Yadav, J.S. Bajaj, S. and Rajam M.V. (2001) Polyamines as biomarkers for plant regeneration capacity:improvement of regeneration by modulation of polyamine metabolism in different genotyprs of indica rice. Plant Sci. 160: 1229-1235.

Slocum, R.D., Flores, H.E., Galston, A.W. and Weinstein L.H. (1989) Improved method for HPLC analysis of polyamines, agmatine and aromatic monoamines in plant tissue. Plant Physiol. 89:512-517.

Tassoni, A., Fornale, S. and Bagni, N. (2003) Putative ornithine decarboxylase activity in Arabidopsis thaliana:inhibition and intracellular localization. Plant Physiol. Biochem. 41: 871-875.

Thu-Hang, P., Bassie, L., Safwat, G., Trung-Nghia, P., Christou P. and Capell T. (2002) Expression of a heterologous S-Adenosylmethionine Decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-Methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. Plant Physiol. 129: 1744-1754.

Trung-Nghia, P., Bassie, L., Safwat, G., Thu-Hang, P. Lepri, O., Rocha, P., Christou, P. and Capell, T. (2003) Reduction in the endogenous arginine decarboxylase transcript levels in rice leads to depletion of the putrescine and spermidine pools with no concomitant changes in the expression of downstream genes in the polyamine biosynthetic pathway. Planta 218: 125-134.

Waie, B. and Rajam, M.V. (2003) Effect of increased polyamine biosynthesis on stress response in transgenic tabbacco by introduction of human S-adenosylmethionine gene. Plant Sci. 164: 727-734.

Zhao, F.G., Sun, C., Liu, Y.L. and Zhang W.H. (2003) Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Bot. Sin. 45(3): 295-300.

Zhu, J.K. (2001) Over expression of a delta-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Trends Plant Sci. 6: 66-72.

Zhu, J.K. (2001) Genetic analysis of plant salt tolerance using Arabidopsis thaliana. Plant Physiol. 124: 941-948.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top