跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李坤聰
研究生(外文):Kun Tsung Lee
論文名稱:使用案例式推理於數位通訊系統硬體模組的代入與合成
論文名稱(外文):Using Case-Based Reasoning for Hardware Module Instantiation and Synthesize of Digital Communication System
指導教授:黃其泮
指導教授(外文):Chi-Pan Hwang
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:49
中文關鍵詞:案例式推理資料庫
外文關鍵詞:Case-based reasoningDatabase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將研究的範圍著重在產生數位通訊應用的自主系統,利用人工智慧的技術及資料庫系統自主完成數位通訊硬體模組的代入與合成。在人工智慧中案例式推理技術是回憶和學習以往案例的解答,並推薦給目前問題案例當作解題參考答案,案例的儲存結構是使用標準關聯式資料庫設計流程。系統的操作程序一開始是由使用者在人機介面輸入設計條件,然後由交易單元產生對案例庫進行交談的查詢敘述,以擷取到解題的候選案例。最後,針對設計的規格,進行候選案例應用的可行性以及解答調整。案例式推理中,效能是最重要的部份,它會影響推論的結果,也就是在資料庫中搜尋到的案例數量。因此,為了提升擷取案例的正確性和效率的,許多比對函數也隨之產生,以達到實現自主系統世代為目標。
In this thesis, the research scope has focused on the autonomous system generation of the digital communication applications. We use the case-base reasoning of artificial intelligence technique and database system to retrieve the reusable digital communication hardware modules that are in turn used to synthesize a dedicated digital communication system referring to the designated system specification. The case-based reasoning technique uses the remembering and learning on existed solutions to solve new problems. The case library is constructed by a standard design flow of relational database to alleviate the implementation efforts. The system generation process is started from the specified design conditions from the graphical user interface, then a set of database query statements are derived to retrieve those candidate solution classes in case library that are built on a database system. Finally, the applicable evaluation and revision are applied on the candidate cases based on the designated system specification. The performance of case-based reasoning is important. It directly influences the amount of retrieved candidate cases from case library. Therefore, several matching functions are devised to promote the correctness and efficiency of the case retrieve that are applied to achieve the goal of autonomous system generation.
中 文 摘 要................i
Abstract................ii
致謝................iii
目 錄................iv
圖 目 錄................v
表 目 錄................vi

第一章 緒論................1
1-1 研究背景................1
1-2 研究動機................1
1-3 研究目的及方法................2
第二章 案例式推理理論................4
2-1 專家系統................4
2-1-1 規則式推理系統(Rule-based reasoning,RBR)................5
2-1-2 案例式推理系統(Case-based reasoning,CBR)................5
2-2 案例式推理系統(Case-based reasoning,CBR)................6
2-2-1 案例表示法(Representation of Cases)................6
2-2-2 案例式推理週期(CBR cycle)................8
2-3 案例式推理系統推論技術................10
2-3-1 索引編派................10
2-3-2 相似度衡量................11
第三章 系統設計方法................13
3-1 設計標準................14
3-2 系統架構................14
3-2-1 系統方塊功能設計................15
3-2-3 系統的學習與維護................34
第四章 實作驗證................36
4-1 開發環境................36
4-2 資料庫與C++ Builder 6.0的設定................37
4-3 系統操作流程及分析................38
第五章 結論................42
參考文獻................44
附錄................47
作者簡歷................50

圖 目 錄

圖2-1 問題與結果空間................7
圖2-2 系統PROTOS案例表示法................8
圖2-3 CBR流程................9
圖2-4 索引資訊................10
圖3-1 系統架構................15
圖3-2 案例庫形成步驟................16
圖3-3 表格形式................17
圖3-4 實體關係圖................18
圖3-5 關聯式資料綱要................18
圖3-6 案例庫架構和應用程式設計流程 20
圖3-7 通訊產品規格................21
圖3-8 通訊抽象階層圖................21
圖3-9 案例庫ER圖................24
圖3-10 Access表格架構................25
圖3-11 關聯式綱要Access格式................25
圖3-12 系統操作流程圖................26
圖3-13 案例收集器................27
圖3-14 屬性分級器................27
圖3-15 SQL產生器................28
圖3-16 案例式推理控制器................28
圖3-17 案例表示格式................29
圖3-18 案例的匹配................30
圖3-19 函數功能................31
圖3-20 數值型相似衡量函數................32
圖3-21 數值型屬性相似值計算範例................33
圖3-22 評論輸出報告框架................34
圖3-23 系統學習流程圖................35
圖4-1 C++ Builder 6.0整合開發環境 36
圖4-2 設定OLE DB提供者................37
圖4-3 連結資料庫................38
圖4-4 GUI介面................38
圖4-5 擷取候選案例................39
圖4-6 系統推理結果................40

表 目 錄

表3-1 需求表格................29
表3-2 解答表格................30
表4-1 屬性相關參數................39
表4-2文字型屬性相似度百分比................40
表4-3數值型屬性相似度百分比................41
表4-4總體相似度百分比................41
[1] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers, San Mateo, CA, 1993
[2] F. Lorenzi and F. Ricci, “Case-Based Recommender Systems:a Unifying View”, LNCS/LNAI State-of-the-Art Survey book on Intelligent Techniques, 2005.
[3] A. Aamodt and E. Plaza, “Case-Based Reasoning:Foundational Issues, Methodological Variations, and System Approaches,” AI Communications, vol.7, no. 1, pp.39-59, March 1994.
[4] D. A. Waterman, A Guide to Expert System, Addison-Wesley, 1985.
[5] R. Bareiss, Exemplar-based knowledge acquisition:A unified approach to concept representation, classification, and learning. Boston, Academic Press, 1989
[6] B. Porter, R. Bareiss and R. Holte, “Concept learning and heuristic classification in weak theory domains,” Artificial Intelligence, vol. 45, no. 1-2, pp. 229-263, Sep 1990.
[7] H.-C. Chang, L. Dong, F.X. Liu and W.F. Lu, “Indexing and retrieval in machining process planning using case-based reasoning,” Artificial Intelligence in Engineering, vol. 13, no. 1, pp1-13, 2000.
[8] B.C. Jeng and T.-P. Liang, “Fuzzy indexing and retrieval in case-based systems,” Expert Systems with Application, vol.8, no.1, pp.135-142, 1995.
[9] H. Li, “Case-based reasoning for intelligent support of construction negotiation,” Information & Management, vol.30, pp231-238, 1996.
[10] J. Kolodner, “Maintaining Organization in a dynamic long-term memory,” Cognitive Science, vol.7, pp243-280, 1983
[11] J. Kolodner, “Reconstructive memory, a computer model,” Cognitive Science, vo1.7, pp281-328, 1983
[12] R. Schank, “Dynamic memory, a theory of reminding and learning in computers and people,” Cambridge University Press.
[13] I. Watson, “Case-based reasoning is a methodology not a technology,” Knowledge-based systems, vol.12, pp303-308, 1999.
[14] N.J. Yau and J.B. Yang, “Applying case-based reasoning technique to retaining wall selection,” Automation in construction, vol.7, pp271-283, 1998.
[15] G. Divr, G. Langholz and M. Schneider, “Matching Attributes in a Fuzzy Case-based Reasoning,” Fuzzy Information Processing Society, 1999. NAFIPS. 18th Int. Conf. of the North American, pp. 33-36.
[16] P. Juell and P. Paulson, “Using Reinforcement Learning for Similarity Assessment in Case-based Systems,” IEEE Intelligent Systems, vol.18, no.4, pp.60-67, January 2003.
[17] D. Xu. Li, “Case-based reasoning,” IEEE Potentials, pp.10-13, 1994
[18] C. Tsatsoulis, Q. Cheng and H.-Y. Wei, “Integrating Case-Based Reasoning and Decision Theory” IEEE Expert, pp.46-55, July/August 1997.
[19] J.Jarmulak, S. Craw and R. Rowe, “Self-Optimizing CBR Retrieval,” In Proceedings of the. 12th IEEE International Conf. On Tools with Artificial Intelligence (ICTAI-2000), pp. 376-383, 2000.
[20] 林耀珍(2004),『軟體架構師的成功秘訣』。民國96年1月。取自:http://www.microsoft.com/taiwan/msdn/columns/200410softdev.htm
[21] E.F. Codd, “Relational Model of Data for Large Shared Data Banks,”Communications of the ACM, vol.13, no.6, pp.377–387, June 1970.
[22] D. Hennessy and D. Hinkle, “Applying Case-based Reasoning to Autoclave Loading,” IEEE Expert, vol7, pp21-28, October 1992.
[23] T. Tanaka, M. Hattori and N. Sueda,“Use of Multiple Cases in Case-Based Design,” In Proceedings of. the IEEE Int. Conf. on AI Applications, pp. 233–239, 1992.
[24] L. Lifeng, M. Zengqiang, Z. Zhe and L. Baizhen, “Research on Case Organization and Retrieval of Case and Rule Based Reasoning Approaches for Electric Power Engineering Design,” Power System Technology, 1998. Proceedings. POWERCON '98. 1998 Int. Conf. on, vo1.7, pp.1082-1085.
[25] 姚修慎(1999),『資料庫系統概論』,揚智文化事業股份有限公司。
[26] 施威銘(1998),『Access 2000系統開發實務』,旗標出版股份有限公司。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張啟明(1998)。開創「實物教學」的先河提倡活潑教學的康米紐斯。高市文教,61,15-18。
2. 張基成(1997)。開發思考與創造力之知識建構工具與認知學習環境的探討:電腦的革新應用。教學科技與媒體,33,36-45。
3. 唐偉成、江新合(1998)。以問題解決為導向的教學理念與模式。屏師科學教育,8,12-28。
4. 張國恩(1999)。資訊融入各科教學之內涵與實施。資訊與教育雜誌,72,2-9。
5. 徐新逸(1998)。情境學習對教學革新之回應。研習資訊,15(1),16-23。
6. 徐新逸(1996)。情境教學在數學教育上之應用。教學科技與媒體,29,13-22。
7. 徐加玲、張雅芳(2003)。媒體教材之特質與學生學習動機關係之探討。教育研究月刊,116,64-76。
8. 施郁芬、陳如琇(1996)。情境脈絡與學習遷移。教學科技與媒體,29,23-31。
9. 林奕宏、張景媛(2001)。多元智能與問題解決整合型教學模式對國小學生數學學習表現之影響。教育心理學報,33(1),1-30。
10. 林明地(2005)。適用於校長專業發展的PBL教案設計。教育研究月刊,129,79-91。
11. 宋曜廷、張國恩、侯惠澤(2005)。資訊科技融入教學:借鏡美國經驗反思台灣發展。教育研究集刊,51(1),31-62。
12. 呂聰賢(2002)。淺談資訊融入教學模式。北縣教育,41,47-49。
13. 李坤崇(2004)。修定Bloom認知分類及命題實例。教育研究月刊,122,98-127。
14. 吳聲毅、林振欽(2004)。資訊科技融入教學之教學分析模式。國教新知,50(4),63-70。
15. 吳宗立(2000)。情境學習論在教學上的應用。人文及社會學科教學通訊,11(3),157-164。