|
References [1] C. N. CHEN, Multiple solutions for a class of nonlinear Sturm-Liouville problems on the half line. J. Differential Equations 85 (1990), 236-275. [2] J. A. HEMPEL, Multiple solutions for a class of nonlinear boundary value problems. Indiana Univ. Math J. 20 (1971), 983-996. [3] E. A. CODDINGTON AND N. LEVINSON, ”Theory of Ordinary Differential Equations,” McGraw-Hill, New York, 1955 [4] J. A. HEMPEL, ”Superlinear Variational Boundary Value Problems and Nonunique- ness,” Thesis, University of New England, Australia, 1970. [5] K. NAKASHIMA AND K. TANAKA, Clustering layers and boundary layers in spatially in-homogeneous phase transition problems, Ann. I. H. Poincar´e Anal. Non Lineaire 20 (2003), 107-143. [6] M. G. CRANDALL AND P. H. RABINOWITZ, Nonlinear Sturm-Liouville eigenvalue prob- lems and topological degree, J. Math. Mech. 29 (1970), 1083-1102. [7] M. H. PROTTER AND H. F. WEINBERGER, ”Maximum Principles in Differential Equa- tions,” Prentice-Hall, Englewood Cliffs, NJ, 1967. [8] P. FELMER, S. MART´ıNEZ AND K. TANAKA, Multi-clustered high energy solutions for a phase transition problem, preprint. [9] P. H. RABINOWITZ, A note on a nonlinear eigenvalue problem for a class of differential equations, J. Differential Equations 9 (1971), 536-548.
[10] P. H. RABINOWITZ, Nonlinear Sturm-Liouville problems for second order order ordi- nary differential equations, Comm. Pure Appl. Math. 23 (1970), 939-961. [11] R. COURANT AND D. HILBERT, ”Mathods of Mathematical Physics,” Vol. I, Inter- science, New York, 1953 [12] Z. NEHARI, Characteristic values associated with a class of nonlinear second-order differential equations, Acta Math. 105 (1961), 141-175. [13] R. G. BARTLE, ”The elements of Real Analysis,” 2nd edition, John Wiley and Sons, New York, 1976. [14] I. M. GELFAND AND S. V. FOMIN, ”Calculus of Variations,” Prentice-Hall, New Jersey, 1963.
|