跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張智景
研究生(外文):Chih-Ching Chang
論文名稱:運動質量與樑系統之主動式振動控制與暫態分析
論文名稱(外文):The Transient Dynamics and Active Vibration Control of Beam-Mass System
指導教授:王宜明
指導教授(外文):Yi-Ming Wang
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:68
中文關鍵詞:運動質量與樑系統撓性結構體主動式最佳化控制
外文關鍵詞:beam-mass systemflexible structuresactive optimal control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在研究與設計撓性結構時,機械的結構振動是一個重要的研究主題。本文之目的在於應用線性二次調節器的最佳化性能指數於移動在一有或無初始撓度樑的運動質量之暫態與動態控制,並分析以三個分散式制動器所建構之閉迴路回授控制模式於運動質量與樑系統之動態響應與動態控制情形。
基於尤拉-柏努力樑理論與牛頓力學,得到一個結合閉迴路回授控制的非線性耦合運動方程式。由電腦模擬結果顯示,雖然變動某些物理參數,如質量比、質量的初始速度和樑的初始撓度…等,但若有適當的調節器設計就可以使加入的控制器之控制效能還是能有效的維持系統的穩定。所以在本文中雖然使用一個簡單的控制方法,但是對於系統的振動卻能達到良好的抑制效果。

關鍵字: 運動質量與樑系統,撓性結構體,主動式最佳化控制
Mechanical vibration is an important topic in the study and design of flexible structures. The objective of this thesis is to study the dynamics and control of an attached mass rolling on with or without initially curved beam based on a simplified control model. The transient dynamics of system and the optimization of the performance index of linear quadratic regulator (LQR) are considered. Three discrete actuators are placed along the beam that provides the necessary forces to control the response of the beam-mass system.
Based on Euler-Bernoulli beam theory and Newtonian mechanics, the coupled non-linear equations of motion combining with a simple closed-loop feedback control are obtained.
Results of computer simulation show that with appropriate regulator design, although the variation of certain physical parameters, such as the mass ratio, the initial speed of mass and initially curved of beam, excellent control performance of the introduced control system is still maintained. Therefore, the vibration of the system can be suppressed significantly even if a simplified control model is applied.

Keyword: beam-mass system, flexible structures, active optimal control
Abstract (Chinese) I
Abstract (English) II
Acknowledge III
Contents IV
Figure Contents VII
Index Notation XI

Chapter 1 Introduction 1
1-1 Background and Motivation 1
1-2 Literature Survey 3
1-3 Organization 5
Chapter 2 Equation of Motion of Beam-Mass System 7
2-1 Basic Formulas of A Beam-Mass System without initial curvature 7
2-1-1 Boundary-Value and Control Forces Problem of A Beam-Mass System 11
2-1-2 The Approximate Solution of A Beam-Mass System 12
2-2 Basic Formulas of A Beam-Mass System with initial curvature 16
2-2-1 Boundary-Value and Control Forces Problem of A Beam-Mass System 20
2-2-2 The Approximate Solution of A Beam-Mass System 22
Chapter 3 Control Law Design 27
3-1 A Review of The Linear Quadratic Control 27
3-2 The Linear Quadratic Regulator Vibration Control Design 29
3-3 The Number of Actuators and the Placement of Actuators 34
Chapter 4 Numerical Results and Discussions 36
4-1 The Transient Dynamics of A Beam-Mass System 36
4-1-1 The Dynamic Responses of The System without Initial Curvature 36
4-1-2 The Dynamic Responses of The System with Initial Curvature 47
4-2 The Optimal LQR Vibration Control with A Beam-Mass System 51
4-2-1 The Control Responses of The System without Initial Curvature 51
4-2-2 The Control Responses of The System with Initial Curvature 59
Chapter 5 Conclusions 63
5-1 Summary 63
5-2 Recommendations for Future Work 63
Bibliography 64
Publications 68
1. Y. R. Hu and A. Ng, “Active Robust Vibration Control of Flexible Structures,” Journal of Sound and Vibration, Vol. 288, pp. 43-56, 2005.
2. C. C. Chang, “Robust Vibration Controller Design of Flexible Structures,” Proceedings of the 13th Chinese Sound and Vibration Conference, Changhua, Taiwan, A8, 2005.
3. I. Z. Mat Darus and M.O. Tokhi, “Soft Computing-Based Active Vibration Control of A Flexible Structure,” Engineering Applications of Artificial Intelligence, Vol. 18, pp. 93-114, 2005.
4. R. L. Clark, W. R. Saunders and G. P. Gibbs, Adaptive structures, Dynamics and Control. New York: John Wiley & Sons, Inc., 1998.
5. C. R. Fuller, S. J. Elliott and P. A. Nelson, Active Control of Vibration. London: Academic Press Limited, 1996.
6. A. R. Mohamed and H. L. Horst, “Active Control of Flexible Structures,” Journal of the Structural Division, ST8, pp. 1251-1265, 1978.
7. A. R. Mohamed and H. L. Horst, “Automatic Active Control of Structures,” Journal of the Structural Division, ST3, pp. 663-677, 1980.
8. D. A. Wang and Y. M. Huang, “Modal Space Vibration Control of A Beam by Using The Feedforward and Feedback Control Loops,” International Journal of Mechanical Sciences, Vol. 44, pp. 1-19, 2002.
9. P. Gardonio and S. J. Elliott, “Modal Response of A Beam with A Sensor-Actuator Pair for The Implementation of Velocity Feedback Control,” Journal of Solids and Structures, Vol. 284, pp. 1-22, 2005.

10. C. R. Steele, “The Finite Beam with A Moving Load,” ASME Journal of Applied Mechanics, Vol. 34, pp. 111-118, 1967.
11. C. R. Steele, “The Timoshenko Beam with A Moving Load,” ASME Journal of Applied Mechanics, Vol. 35, pp. 481-488, 1968.
12. E. C. Ting, J. Genin and J. H. Ginsberg, “A General Algorithm for Moving Mass Problems,” Journal of Sound and Vibrations, Vol. 33, pp. 49-58, 1974.
13. Y. M. Wang, “The Dynamic Analysis of A Beam-Mass System Due to The Occurrence of Two-Component Parametric Resonance,” Journal of Solids and Structures, Vol. 258, pp. 951-967, 2002.
14. Y. M. Wang, “The Dynamical Analysis of A Finite Inextensible Beam with An Attached Accelerating Mass,” International Journal of Solids and Structures, Vol. 35, pp. 831-854, 1998.
15. Y. H. Lin, “Optimal Vibration Suppression in Modal Space for Flexible Beams Subjected to Moving Loads,” Shock and Vibration, Vol. 4, pp. 39-50, 1997.
16. Y. G. Sung, “Modelling and Control with Piezoactuators for A Simply Supported Beam under A Moving Mass,” Journal of Sound and Vibration, Vol. 250, 617-626, 2002.
17. U. Lee, “Separation between The Flexible Structure and The Moving Mass Sliding on It,” Journal of Sound and Vibrations, Vol. 209, pp. 867-877, 1998.
18. G. G. Adams, “Critical Speeds and The Response of A Tensioned Beam on An Elastic Foundation to Repetitive Moving Loads,” International Journal of Mechanical Sciences, Vol. 37, pp. 773-781, 1995.

19. A. V. Kononov and R. de Borst, “Instability Analysis of Vibrations of A Uniformly Moving Mass in One and Two-Dimensional Elastic Systems,” European Journal of Mechanics A/Solids, Vol. 21, pp. 151-165, 2002.
20. M. Mofid and M. Shadnam, “On The Response of Beams with Internal Hinges, under Moving Mass,” Advances in engineering Software, Vol. 31, pp. 323-328, 2000.
21. A. Yavari, M. Nouri and M. Mofid, “Discrete Element Analysis of Dynamic Response of Timoshenko Beams under Moving Mass,” Advances in engineering Software, Vol. 33, pp. 143-153, 2002.
22. L. Fryba, Vibration of Solids and Structures under Moving Loads. London: Thomas Telford, 1999.
23. R. S. Ayre, L. S. Jacobson and C. S. Hsu, “Transverse Vibration of One- and Two-Span Beams under The Action of A Moving Mass Load,” Proceedings of the First National Congress of Applied Mechanics, pp. 81-90, 1951.
24. S. Park and Y. Youm, “Motion of A Moving Elastic Beam Carrying A Moving Mass – Analysis and Experimental Verification,” Journal of Sound and Vibrations, Vol. 240, pp. 131-157, 2001.
25. M. J. Balas, “Feedback Control of Flexible Systems,” IEEE Trans, on Automatic Control, Vol. 23, pp.673-679, 1978.
26. C. K. Sung and Y. C. Chen, “Vibration Control of The Elastodynamic Response of High-Speed Flexible Linkage Mechanisms,” Transactions of the ASME, Journal Vibration and Acoustics, Vol. 113, pp. 14-21, 1991.
27. J. V. Breakwell, J. L. Speyer and A. E. Bryson, “Optimization and Control of Nonlinear Systems Using The Second Variation,” SIAM Journal of control, Vol. 1, pp. 193-223, 1963.
28. H. J. Kelley, “Guidance Theory and Extermal Fields,” IRS Trans. Automation Control, Vol. AC-7, pp. 75-82, 1962.
29. A. P. Sage, Optimum Systems Control. Englewood Cliffs, N.J.: Prentice Hall, Inc., 1968.
30. R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary Value Problems. New York: Elsevier, 1965.
31. Brian D. O. Anderson and J. B. Moore, Optimal Control-Linear Quadratic Methods. Englewood Cliffs, N.J. : Prentice Hall, 1990.
32. B. Shahian and M. Hassul, Control System Design Using MALAB. Englewood Cliffs, N.J. : Prentice Hall, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 黃秀錦,〈現階段歌仔戲劇團結構與經營之比較分析〉,《民俗曲藝》,1987,50:32-55。
2. 黃美英,〈三代同堂的明華園〉,《民俗曲藝》,1983,26:45-76。
3. 陳昱安,〈從野臺到國家舞台—明華園歌劇團的興起與創新〉,《中央月刊》,1992,25.5:44-50。
4. 陳進傳,〈本地歌仔研究的回顧〉,《宜蘭文獻雜誌》,1999,38:134-158。
5. 陳恆嘉,〈研究之苦,運用之樂--從「拱樂社」歌仔戲劇本看臺語書面化問題〉,《傳統藝術》,2001,13:19-22。
6. 蔡秀女,〈光復後的歌仔戲電影〉,《民俗曲藝》,1987,46:26-35。
7. 蔡欣欣, 〈千禧年聆聽歌仔的跫音:世紀戲說--與歌仔戲藝術對話活動紀實〉,傳統藝術》,2001,11:11-15。
8. 蔡欣欣,〈臺灣劇場歌仔戲邁向現代化的發展--以一九八0年到一九九七年臺北市劇場歌仔戲演出為例〉,《當代》,1998,13/131:14-33。
9. 李安和,〈論台灣「唸歌—歌仔戲」的戲曲語言時數所據—從音樂、語言美學的觀點來探討〉,《民俗曲藝》,1989,58:5-53。
10. 李香秀,〈用影像書寫歌仔戲歷史--關於紀錄片「消失的王國--拱樂社」〉,《傳統藝術》,2001,13:26-29。
11. 林鋒雄,〈歌仔戲在台灣地區的文化地位〉,《藝術評論》,1995,6:137-148。
12. 林良哲,〈由落地掃到歌仔戲--日治時期歌仔戲發展過程初探〉,《宜蘭文獻雜誌》,1999,38:3-49。
13. 林茂賢,〈歌仔戲的過去、現在與未來〉,《文化視窗》,1999,15。
14. 林茂賢,〈歌仔戲舞台道具簡介〉,《民俗曲藝》,1986,42:48-72。
15. 林顯源,〈由西方導演理論看臺灣歌仔戲的「戲先生」與「導演」〉,《復興劇藝學刊》,1998,22:57-62。