跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 13:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李智淵
論文名稱:脈衝直流磁控濺鍍ITO透明導電膜於塑膠基板之研究
論文名稱(外文):Properties of pulse magnetron sputter for indium tin oxide (ITO) on polyethesulfone(PES) plastic substrate
指導教授:林義成林義成引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:100
中文關鍵詞:脈衝磁控濺鍍ITO薄膜PES塑膠基材能率循環
外文關鍵詞:Pulse magnetron sputterITOPES plastic substrateDuty cycle
相關次數:
  • 被引用被引用:3
  • 點閱點閱:722
  • 評分評分:
  • 下載下載:212
  • 收藏至我的研究室書目清單書目收藏:0
本實驗採用脈衝磁控濺鍍(Pulse magnetron sputter,PMS),將透明導電ITO(Indium tin oxide) 薄膜沉積於可撓性塑膠基材PES (Polyethersulfone)上,藉由調變PMS功率、工作壓力、週期性時間等製程參數,分析其對於薄膜的微結構、光電性質及力學性質的影響。薄膜性質分析檢測上,係利用X-ray繞射儀進行薄膜的微結構分析,SEM和AFM量測表面形態分析,以四點探針來量測薄膜的導電性,以及使用紫外/可見光光譜儀來量測薄膜的光穿透率。至於薄膜的應力分析,則是藉由掃描式電子顯微鏡量測基板變形量,並配合懸臂樑法使用Stony方程式來完成。實驗結果得知:在相同輸出功率沈積ITO薄膜下,PMS較射頻製程有較低的基板溫度、較高的沈積速率及較低電阻率。能率循環的增加,可改善薄膜的表面粗糙度及較佳的薄膜光電性質。而隨著壓力、功率、能率循環和濺鍍時間的增加,會使薄膜應力增加,並使塑膠基板產生撓曲變形。當沈積厚度到達1.5μm時,ITO薄膜就會產生明顯裂縫。在工作壓力5×10-3torr、功率60W、週期性時間為33μs、脈衝反轉時間2μs,在能率循環95%條件下,可獲得最佳電性為3.0×10-4Ω-cm、RMS表面粗糙度0.85nm及可見光穿透率可達85%以上的薄膜品質。
his study is to investigate the effect of processes parameter for ITO (Indium Tin Oxide ) deposition on the PES plastic substrate by PMS(Pulse Magnetron Sputter). The process parameter include power, work pressure, pulse frequency, and reverse time. The crystalline of film is analyzed by X-ray diffractiometer. The surface state of films is analyzed with FE-SEM and AFM. The resistivity and transmittance of films are measured by hall measurement system and spectrophotometer. The change of curvature is measured by SEM. The magnitude of film stress was determined by using stoney’s formula.
The experiment’s resulted is that the temperature of PMS is lower about Celsius 3-4 degree and higher deposition rate in comparing the sputter of PMS and RF deposition process. In the conductivity of ITO thin film, the input power 60W of PMS has lower value of conductor than RF process. Therefore the PMS is helpful to has good crystalline and electrical properties in low power and low temperature. And this investigate to discover that PMS process can change the duty cycle to improve the surface roughness of ITO by modifying the parameters of pulse frequency and pulse reverse time in deposition ITO thin film. As the pressure, power, duty cycle and deposition time increases that the stress of thin film will increase and make plastic bending. The film produces to break when film increases thickness 1.5nm.
In this study working pressure (5×10-3torr), power (60W), pulse frequency (30kHz), reverse time (2μs) and duty cycle(95%) deposit ITO thin film on the plastic. The better results of 3.0×10-4Ω-cm resistivity, 0.85nm RMS surface roughness and 90% transmittance are found in this study. So the PMS’s deposition ITO thin films on the plastic obtain good film quality in lower temperature.
目 次
頁次
摘要……...................................................................................................... Ⅰ
謝誌……………………………………………………………………….. Ⅲ
目次……...................................................................................................... Ⅳ
表次……………………………………………………………………….. Ⅶ
圖次……………………………………………………………………….. Ⅷ


第一章 緒 論……………………………………………………………
1
1.1 研究背景與動機……………………………………………………… 1
1.2 研究目的……………………………………………………………… 3
1.3 名詞解釋……………………………………………………………… 5

第二章 理論分析與文獻回顧…………………………………….…….
8
2.1 濺鍍原理……………………………………………………………… 8
2.1.1電漿原理………………………………………………………….. 8
2.1.2射頻濺鍍………………………………………………………….. 11
2.1.3脈衝濺鍍………………………………………………………….. 12
2.1.4脈衝直流電漿之應用…………………………………………….. 15
2.2 ITO透明導電薄膜性質……………………………………………… 18
2.2.1 ITO透明導電薄膜基本性質…………………………………….. 18
2.2.2 ITO透明導電薄膜結構與電性………………………………….. 19
2.2.3 ITO透明導電薄膜光學性質…………………………………….. 19
2.3 薄膜應力………………………………................................................ 21
2.4 製程參數對於ITO薄膜性質的影響……………………………….... 24
2.4.1功率對ITO薄膜性質……………………………………………. 24
2.4.2壓力對ITO薄膜性質的影響……………………………………. 28
2.4.3脈衝頻率對薄膜性質的影響…………………………………….. 32
2.4.4脈衝週對薄膜性質的影響……………………………………….. 34
2.5 塑膠基板鍍膜的挑戰………………………………………………… 37

第三章 研究方法……………………………….………………..
38
3.1 實驗流程……………………………………………………………… 38
3.2 濺鍍系統設備………………………………………………………… 38
3.3 實驗材料與試片準備………………………………………………… 40
3.4 實驗步驟……………………………………………………………… 41
3.4.1基板前處理……………………………………………..………… 41
3.4.2濺鍍步驟與條件…………………………………………..……… 43
3.5 薄膜特性分析………………………………………………………… 46
3.5.1沉積速率量測……………………………………………..……… 46
3.5.2電性量測………………………………………………….………. 47
3.5.3薄膜表面形態分析……………………………………………….. 49
3.5.4微結構分析……………………………………………………….. 51
3.5.5光學性質量測………………………………………….….……… 52
3.5.6薄膜殘留應力量測………………………………………….….… 53

第四章 結果與討論………………………………………….…...
54
4.1 脈衝磁控濺鍍優勢…………………………………………………… 54
4.2 脈衝磁控濺鍍製程參數對薄膜沈積速率影響……………………… 58
4.2.1壓力對薄膜沈積率影響………………………………………….. 58
4.2.2功率對薄膜沈積影響...................................................................... 60
4.2.3脈衝週期性時間對薄膜沈積率影響…………………………….. 60
4.3 PMS製程參數對薄膜光電性質影響………………………………... 63
4.3.1工作壓力對薄膜光電性質影響………………………………….. 63
4.3.2功率對薄膜光電性質影響………………………………………. 73
4.3.3脈衝反轉時間及脈衝時間比對薄膜光電性質影響…………….. 83
4.4 PMS製程參數對ITO薄膜殘留應力影響………………………….. 93
第五章 結論與未來研究……………………………………………….. 101
5.1 結論…………………………………………………………………… 101
5.2 未來研究……………………………………………………………… 102
參考文獻………………………………………………………………….. 103










表1 表 次
玻璃與塑膠LCD面板性能比較………………………………………

4
表2 實驗參數表……….…………………………………………………… 44






















圖 次

圖1 電漿在基材和腔體的各種反應示意圖……………………………… 9
圖2 射頻濺鍍系統示意圖………………………………………………… 11
圖3 脈衝電源供應器提供五種電壓輸出模式示意圖…………………… 12
圖4 脈衝電源供應器避免異常放電之原理示意圖……………………… 13
圖5 TM模式功率變化情形示意圖………………………………………. 14
圖6 CW mode 和TM mode之電漿參數的比較圖……………………… 15
圖7 優選濺射示意圖,(a)、(b)、(c)分別顯示正常模式、逆向模式、及反轉模式三者的靶電壓及靶面發生情形……………………………
17
圖8 In2O3體立方晶體結構圖……………………………………………... 18
圖9 能帶與Burstein-Moss sift示意圖…………………………………. 21
圖10 薄膜應力類型…………………………………………………………. 22
圖11 懸臂樑法薄膜應力量測系統圖………………………………………. 23
圖12 不同功率對薄膜XRD圖影響………………………………………. 24
圖13 不同功率對薄膜電性影響…………………………………………… 25
圖14 不同功率對薄膜穿透率的影響……………………………………… 25
圖15 不同功率對電性影響………………………………………………… 26
圖16 不同功率對電性和沈積率影響……………………………………… 27
圖17 不同功率對薄膜XRD圖影響……………………………………….. 27
圖18 不同壓力對薄膜XRD圖影響………………………………………. 28
圖19 不同壓力AFM影像圖……………………………………………….. 29
圖20 不同壓力對穿率影響………………………………………………… 30
圖21 不同壓力對能隙影響………………………………………………… 30
圖22 不同壓力對XRD圖影響…………………………………………….. 31
圖23 不同壓力對電性性質影響.................................................................... 31
圖24 不同脈衝頻率對薄膜結構性和晶粒尺寸影響. …………………….. 32
圖25 不同脈衝頻率對薄膜電阻性質影響………………………………… 33
圖26 不同脈衝頻率對表面粗糙度影響…………………………………… 33
圖27 不同脈衝頻率對光學穿透率影響…………………………………… 34
圖28 不同脈衝週期對薄膜電性影響……………………………………… 34
圖29 脈衝週期對薄膜穿透率影響………………………………………… 35
圖30 脈衝頻率對表面形態影響…………………………………………… 35
圖31 單極脈衝週期對薄膜穿透率影響…………………………………… 36
圖32 單極脈衝週期對薄膜表面粗糙度影響……………………………… 36
圖33 實驗流程圖…………………………………………………………… 39
圖34 薄膜濺鍍系統示意圖………………………………………………… 40
圖35 塑膠基板前處理流程圖……………………………………………… 41
圖36 單晶矽基板前處理流程圖…………………………………………… 42
圖37 脈衝波形輸出示意圖…………………………………………………. 45
圖38 α-step段差測試儀……………………………………………………. 46
圖39 四點探針量測儀……………………………………………………… 47
圖40 霍爾量測示意圖……………………………………………………… 48
圖41 場發射電子顯微鏡…………………………………………………… 49
圖42 原子力電子顯微鏡…………………………………………………… 50
圖43 X-ray繞射儀…………………………………………………………. 51
圖44 紫外/可見光光譜儀………………………………………………….. 52
圖45 懸臂樑法應力量測示意圖…………………………………………… 53
圖46 固定工作壓力5×10-3torr,不同製程在相同功率下對沉積率之影響
圖......................................................................................................... 55
圖47 固定工作壓力5×10-3torr,不同製程在相同功率下功率對其基板溫
度之影響圖............................................................................................. 56
圖48 固定工作壓力5×10-3torr,PMS和RF濺鍍功率對電性之影響圖… 57
圖49 功率60W、脈衝時間比為15/5,工作壓力對沉積速率之影響圖........ 59
圖50 工作壓力5×10-3 torr、脈衝時間比為15/5,功率對沉積速率之影響圖............................................................................................................. 61
圖51 工作壓力5×10-3 torr、功率60W,週期性時間33μs,脈衝反轉時間對沉積率之影響圖............................................................................. 62
圖52 功率60W、脈衝時間比為ton-/ton+=15/5,工作壓力對電性之影響圖 64
圖53 功率60W、脈衝時間比為ton-/ton+=15/5,工作壓力對穿透率之影響圖............................................................................................................. 65
圖54 功率60W、脈衝時間比為ton-/ton+=15/5,工作壓力與撓射強度之影響圖……………………………………………………………………. 67
圖55 功率60W、脈衝時間比為ton-/ton+=15/5,工作壓力對ITO薄膜(222)
結晶面優選取向半高寬值之關係圖..................................................... 68
圖56 功率60W、脈衝時間比為ton-/ton+=15/5,壓力與薄膜SEM表面形態關係圖(a) 1×10-2torr (b) 5×10-3torr (c) 2×10-3torr…………………. 70
圖57 功率60W、脈衝時間比為ton-/ton+=15/5,壓力對薄膜AFM表面形態影響圖(a) 1×10-2torr (b) 5×10-3torr (c) 2×10-3torr…………………. 71
圖58 功率60W、脈衝時間比為ton-/ton+=15/5,工作壓力對薄膜表面粗糙度之影響圖……………………………………………………………. 72
圖59 工作壓力5×10-3torr、脈衝時間比為ton-/ton+=15/5,功率對電性之影
響圖......................................................................................................... 74
圖60 工作壓力5×10-3torr、脈衝時間比為ton-/ton+=15/5,功率對穿透率之
影響圖..................................................................................................... 75
圖61 工作壓力5×10-3torr、脈衝時間比為ton-/ton+=15/5,功率與繞射強度
之影響圖………………………………………………………………. 77
圖62 工作壓力5×10-3torr、脈衝時間比為ton-/ton+=15/5,功率對ITO薄膜(222)結晶面優選取向半高寬值之關係圖............................................ 78
圖63 工作壓力5×10-3torr、脈衝時間比為ton-/ton+=15/5,功率與薄膜SEM表面形態關係圖(a)40W(b)60W(c)80W (d)100W................................. 80
圖64 工作壓力5×10-3torr、脈衝時間比為ton-/ton+=15/5,功率對薄膜AFM表面形態影響圖(a)40W(b)60W(c)80W (d)100W................................. 81
圖65 工作壓力5×10-3torr、脈衝時間比為ton-/ton+=15/5,功率對表面粗
糙度之影響圖…………………………………………………………. 82
圖66 工作壓力5×10-3torr、功率60W、週期性時間33μs,脈衝反轉時間
對電性之影響圖………………………………………………………. 84
圖67 工作壓力5×10-3torr、功率60W、週期性時間33μs,脈衝反轉時間
對穿透率之影響圖……………………………………………………. 85
圖68 工作壓力5×10-3torr、功率60W、週期性時間33μs,脈衝反轉時間
與撓射強度之影響圖…………………………………………………. 87
圖69 工作壓力5×10-3torr、功率60W、週期性時間33μs,脈衝反轉時間
對ITO薄膜(222)結晶面優選取向半高寬值之關係圖........................ 88
圖70 工作壓力5×10-3torr、功率60W、週期性時間33μs,脈衝反轉時間與薄膜SEM表面形態關係圖(a)2μs (b)5μs (c)8μs………………….. 90
圖71 工作壓力5×10-3torr、功率60W、週期性時間33μs,脈衝反轉時間對薄膜AFM表面形態影響圖(a)2μs (b)5μs (c)8μs………………….. 91
圖72 工作壓力5×10-3torr、功率60W、週期性時間33μs,脈衝反轉時間
對表面粗糙度關係圖…………………………………………………. 92
圖73 工作壓力5×10-3torr、功率60W、脈衝時間比為ton-/ton+=15/5時,
薄膜沉積時間,應力對基板彎曲現象之比較圖……………………. 94
圖74 濺鍍ITO薄膜於PES塑膠基板薄膜裂縫產生SEM圖(a)1.5μm (b)1.8μm……………………………………………………………….. 95
圖75 功率60W、脈衝時間比為ton-/ton+=15/5,工作壓力對薄膜殘留應力之關係圖………………………………………………………………. 98
圖76 工作壓力5×10-3torr、脈衝時間比為ton-/ton+=15/5,功率對薄膜殘留應力之關係圖…………………………………………………………. 99
圖77 工作壓力5×10-3torr、週期性時間33μs,脈衝反轉時間對薄 膜殘留應力之關係圖………………………………………………………. 100
參考文獻
[ 1 ] Y. Abe, N. Ishiyama, “Polycrystalline filmed tungsten-doped indium oxide prepared by DC magnetron sputtering”, Materials Letters, 2006, Article in press.
[ 2 ] N. Danson, I. Safi, “Techniques for the sputtering of optimum indium-tin oxide films on to room-temperature substrates”, Surface and Coatings Technology , 99, 1998, pp.147-160.
[ 3 ] T. Minami, H. Sonohara, “Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering”, Thin Solid Films, 270, 1995, pp.37-42.
[ 4 ] Y. Fukushi, H. Kominami, Y. Nakanishi and Y. Hatanaka, “Effect of ITO surface state to the aging characteristics of thin film OLED”, Applied Surface Science, 244, 2005, pp.537-540.
[ 5 ] 陳信吉,蕭忠信,“可撓性平面顯示器產品及製程設備介紹”,機械工業,270期,2005,pp.59-70。
[ 6 ] T. C. Gorjanc, D. Leong, D.Roth, “Room temperature deposition of ITO using RF magnetron sputtering”, Thin Solid Films 413, 2002, pp.181-185.
[ 7 ] H. C. Lee, J. Y. Seo, Y. W. Choi, D. W. Lee, “The growth of indium tin oxide thin films on glass substrates using DC reactive magnetron sputter”, Vacuum, 72, 2004, pp.269-276.
[ 8 ] 楊明輝,“脈衝磁控濺鍍技術介紹”,工業材料,232,2006,pp.91-98。
[ 9 ] 溫志中,“電漿粒子與物理薄膜沈積的關聯與發展”,工業材料,2004,pp77-83。
[10] L. B. Jonsson, T. Nyberg, I. Katardjiev, S. Berg, “Frequency response in pulsed DC reactive sputtering processes”, Thin Solid Films, 365, 2000, pp.43-48.
[11] H. Xiao, “Introduction to semiconductor manufacturing technology”, Pearson Education Company, 2003, pp.222.
[12] 葉通迪,“純直流及非對稱雙極脈衝直流離子氮化鈦之研究”,私立逢甲大學碩土論文,2001。
[13] B. Campman, “Glow discharge process”, John Wiley & Son, 1980, pp.49.
[14] 陳思成,“沈積ITO透明導電膜於可撓式基板上之性質研究”,國立成功大學碩士論文,2003。
[15] J. C. Sellers, ENI, “Asymmetric bipolar pulse DC an enabling technology for reactive PVD”, ENI.100 High-power Rochester, 1996, NY14623.
[16] J. T. Verdeyen, J. Beberman and L. Overzet, “Modulated discharges: Effect on plasma parameters and deposition”, Journal of Vacuum Science Technology, A8, 1990, p1851-1856.
[17] B. Chapman, “Glow discharge processes”, John Wiley & Son, 1980, pp184.
[18] L. C. Jiangalss, “Technology for the sputtering deposition TiO2 ” , Chinese vacuum, http://www.chinesevacuum.com/homepageinfo/homepagearticle.
[19] A. M. Gheidari, E. A. Soleimani, M. Mansorhoseini, S. Mohajerzadeh, N. Madani, W. S. Kolahi, “Structural properties of indium tin oxide thin films prepared for application in solar cell”, Materials Research Bulletin, 40, 2005, pp.1303-1307.
[20] L. Chkoda, C. Heske, M. Sokolowski, E. Umbach, F. Steuber, J. Staudigel, M. Stosel, J. Simmerer, “ Work function of ITO substrates and band-offsets at the TPD/ITO interface determined by photoelectron spectroscopy”, Synthetic Metals, 315, 2000, p.111-112.
[21] J. Bartella, J. Schroeder, K. Witting, “Characterization of ITO and TiOxNy films by spectroscopic ellipsometry, spectra photometry and XPS”, Applied Surface Science, 179, 2001, pp.181-190.
[22] S. K. Choi, J. I. Lee, “Effect of film density on electrical properties of indium tin oxide films deposited by dc magnetron reactive sputtering”, Journal of Vacuum Science, A19, 2001, pp.2043-2047.
[23] A. J. Steckl and G. Mohammed, “ The effect of ambient atmosphere in the annealing of ITO films ”, Journal of Apply Physics, 51, 1980, p.3890-3895.
[24] F. P. Fehlner, “Thin film on glass for liquid crystal displays ”, Journal of Non-Crystalline Solids, 218, 1997, pp.360-367.
[25] 黃崇傑,“塑膠基板沈積ITO薄膜技術”,電子與材料雜誌,10, pp.115-120。
[26] G. Frank and H. Kostin, “Electrical properties and degect model of tin doped indium oxide layer”, Applied Physics A, 27, 1982, pp.197-206.
[27] I. Hamberg, C. G. Granqvust, “Band-gap widening in heavily Sn-doped In2O3”, Physical Review B, 30, 1984, pp.3240-3249.
[28] H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Semi conducting transparent thin films”, Institute of Physics, 1995, p219-230.
[29] S. Tamulevicius, “Stress and strain in the vacuum deposited thin film”, Vacuum, 51, 1998, pp.127-139.
[30] A. N. Itakura, T. Narushima, M. Kitjima, K. Teraishi, A. Yamada, A. Miyamoto, “Surface stress in thin oxide layer made by plasma oxidation with applying positive bias”, Applied Surface Science, 159, 2000, pp62-66.
[31] C. A. Davis, “A simple model for formation of compressive stress in thin film by ion bombardment”, Thin Solid Films, 226, 1993, pp.3-14.
[32] J. D. Kamminga, T. D. Kijser, R. Delhez, E. J. Mittemeijer, “A model for stress in thin layers induced by misfit ting particle an origin for growth stress”, Thin Solid Films, 317, 1998, pp.169-172.
[33] P. Klein, B. Gottwald, T. Frauenheim, C. Köhler, A. Gemmler, “Residual stress modeled by MD simulation applied to PVD DC sputter deposition”, Surface and Coatings Technology, 200, 2005, pp.1600-1603.
[34] T. C. Gorjanc, D. Leong, D. Roth, “Room temperature deposition of ITO using RF magnetron sputtering”, Thin Solid Films, 413 , 2002, pp.181-185.
[35] Y. S. Kim, Y. C. Park, S. G. Ansari, J. Y. Lee, B. S. Leec, H. S. Shin, “Influence of O2 admixture and sputtering pressure on the properties of ITO thin films deposited on PET substrate using RF reactive magnetron sputtering”, Surface and Coatings Technology , 173, 2003, pp.299-308.
[36] Y. S. Junga, J. Y. Seoa, D. W. Leea, D. Y. Jeonb, “Influence of DC magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film”, Thin Solid Films, 445, 2003, pp.63-71.
[37] H. H. Yu, S. J. Hwang, M. C. Tseng , C. C. Tseng, “The effect of ITO films thickness on the properties of flexible organic light emitting diode”, Optics Communications, 259, 2006, pp.187-193.
[38] L. R. Cruza, C. Legnani, I. G. Matoso, C. L. Ferreira, H. R. Moutinho, “Influence of pressure and annealing on the microstructure and electro optical properties of RF magnetron sputtered ITO thin films”, Materials Research Bulletin, 39 , 2004, pp.993-1003.
[39] P. Canhola, T. N. Martins, L. Raniero, S. Pereira, E. Fortunato, I. Ferreira, R. Martins, “Role of annealing environment on the performances of large area ITO films produced by RF magnetron sputtering” , Thin Solid Films, 487, 2005, pp.271-276.
[40] H. Ko, W. P. Tai, K. C. Kim, S. H. Kim, S. J. Suh, Y. S. Kim, “Growth of Al-doped ZnO thin films by pulsed DC magnetron sputtering” , Journal of Crystal Growth, 277, 2005, pp.352-358.
[41] W. J. Lee, Y. K. Fang,” Optimizing indium tin oxide thin films with bipolar DC pulsed magnetron sputtering for electrochromic device applications”, Journal of Materials Science: Materials in Electronics, 13, 2002, pp. 751-756.
[42] M. S. Hwang, H. J. Lee, H. S. Jeong, Y. W. Seo, S. J. Kwon, “The effect of pulsed magnetron sputtering on the properties of indium tin oxide thin films”, Surface and Coatings Technology, 171, 2003, pp.29-33.
[43] N. Sprang, D. Theirich, and J. Engemann, “Plasma and ion beam surface treatment of polyethylene”, Surface and Coatings Technology, 75, 1995, pp.689-695.
[44] X. Z. Ding, F. M. Zhang, H. M. Wang, L. Z. Chen, and X. H. Liu, “Reactive ion beam assisted deposition of a titanium dioxide film on a transparent polyester sheet”, Thin Solid Films, 368, 2000, pp.257-260.
[45] H. L. Ma, X. T. Hao, J. Ma, Y. G. Yang, S. L. Huang, F. Chen, Q. P. Wang and D. H. Zhang, “Bias voltage dependence of properties for Zno:Al films deposited on flexible substrate”, Surface and Coatings Technology, 161, 2002, pp. 58-61.
[46] http://www.azom.com/details.asp?ArticleID=1953
[47] B. Chapman, “Glow discharge process”, John Wiley&Son, 1980, pp.21-48.
[48] J. A. Thornton and D. W. Hoffman, “The influence of discharge current on the intrinsic stress in Mo films deposited using cylindrical and planar magnetron sputtering sources”, Journal of Vacuum Science Technology, A3, 1985, pp.576-579.
[49] M. Hongbin, C. J. Soo, P. C. Hoo, “A study of indium tin oxide thin film deposited at low temperature using facing target sputtering system”, Surface and Coatings Technology, 153, 2002, pp.131-137.
[50] S. K. Choi, J. I. Lee, “Effect of film density on electrical properties of indium tin oxide films by DC magnetron reactive sputtering”, Journal of Vacuum Science Technology, A5, 2001, pp.2043-2047.
[51] L. R. Cruz, C. Legnani, I. G. Matoso, C. L. Ferreira, H. R. Moutinho, “Influence of pressure and annealing on the microstructure and electro optical properties of RF magnetron sputtered ITO thin film”, Materials Research Bulletin, 39, 2004, pp.993-1003.
[52] M. Nisha, S. Anusha, A. Antony, R. Manoj, M. K. Jayaraj, “Effect of substrate temperature on the growth of ITO thin films”, Applied Surface Science, 252, 2005, pp.1430-1435.
[53] E. G. Fu, D. M. Zhuang, G. Zhang, Z. Ming, W. F. Yang, J. J. Liu, “Properties of transparent conductive ZnO:Al thin films prepared by magnetron sputtering”, Microelectronics Journal, 35, 2004, pp.383-387.
[54] F. L. Wong, M. K. Fung, S. W. Tong, C. S. Lee, S. T. Lee, “Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate”, Thin Solid Films, 466, 2004, pp.225-230.
[55] L. J. Meng and M. P. dos Santos, “Properties of indium tin oxide (ITO) film prepared by RF reactive magnetron sputtering at different pressures”, Thin Solid Films, 303, 1997, pp.151-155.
[56] E. Akkad, M. Marafi, A. Punnoose and G. Prabu, “Effect of substrate temperature on the structural, electrical and optical properties of ITO films prepared by RF magnetron sputtering”, Physica Status Solid, 177, 2000, pp.445-452.
[57] P. F. Carcia, R. S. Mclean, M. H. Reilly, and Z. G. Li, “Influence of energetic bombardment on stress, resistivity, and microstructure of indium tin oxide films grown by radio frequency magnetron sputtering on flexible polyester substrate”, Journal of Vacuum Science Technology, 2003, pp.741-751.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top