跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 21:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭信億
論文名稱:高功率磷化鋁鎵銦雷射二極體的熱自發聚焦效應及漸變結構之特性分析
論文名稱(外文):Characteristic analysis of thermal self-focusing effect and graded-structure on high power AlGaInP laser diode
指導教授:黃滿芳
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:光電科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:高功率磷化鋁鎵銦雷射二極體熱自發聚焦效應漸變結構
外文關鍵詞:high powerAlGaInPlaser diodethermal self-focusinggraded-structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
提升磷化鋁鎵銦雷射二極體的光輸出功,ㄧ直是許多人研究的方向,而磷化鋁鎵銦雷射二極體主要的應用在於DVD-R/RW的讀寫頭光源,隨著燒錄的速度不斷的提升,其需要的光輸出功率與轉速成平方根正比關係,因此想要提升DVD-R/RW的燒錄速度,就必須大幅提升磷化鋁鎵銦雷射的光輸出功率。
本篇論文以理論分析的方式,利用不同雷射結構改善磷化鋁鎵銦雷射的輸出功率,並加入以往模擬較少考慮的熱模型,以期能模擬出更接近實際元件的雷射特性。加入熱效應後的結果,其晶格溫度將會產生變化,進而影響能帶分布、載子的分佈等等,這些特性將會被ㄧㄧ討論。
首先第一章將介紹磷化鋁鎵銦材料的特性以及製作的方式,第二章將介紹磷化鋁鎵銦材料的發展,接著將介紹許多提昇磷化鋁鎵銦雷射特性的方法。
第三章將先說明模擬的參數與熱模型的設定方式,並討論不同披覆層厚度對雷射特性的影響,研究發現披覆層厚度增厚,將使砷化鎵基板與導電層的光場分佈變少,可降低內部損失而提升發光效率。在高功率操作下,電流密度越來越大,光輸出功率也越高,且磷化鋁鎵銦的熱導率係數低,導致元件內部散熱不易,造成元件內部溫度容易升高。但也因為如此,考慮熱效應下的雷射二極體會有熱自發聚焦(Thermal self-focusing effect)的現象產生。當考慮熱效應下的磷化鋁鎵銦雷射二極體,其臨界電流會降低且斜坡效率也會明顯提升。進一步分析發現,載子容易被侷限在電極下方,這也是元件內部溫度較高的地方,因為在高電流下操作時,往側向載子的移動率減小,故載子被侷限在元件結構中波導的區域。此外,在高溫下的導帶底端與費米能階也有所修正,這也是載子會被侷限的原因。因此,在側向的載子將會容易被侷限,所以造成在元件中心量子井處將有較多的載子被利用於受激放射,而從臨界電流、斜坡效率可知,當披覆層厚度為1.7~1.9 um時元件有最佳的效能。
第四章將利用披覆層鋁成份線性漸變的結構,並討論雷射的特性。漸變的披覆層能使光場分佈集中,因此披覆層厚度不需太厚而可以達到一樣的效率,進一步的發現,當考慮熱效應下特性,披覆層厚度為1.3 um時有最低的溫度。
Red AlGaInP laser diodes(LDs)with higher output power and efficiency are strongly required for the DVD-R/RW drivers, especially for improving the writing speed. According to the experimental results, the recording speed is proportional to the square of the output power of AlGaInP LDs. Therefore, to further improve the recording speed of DVD-R/RW, the output power of AlGaInP LDs has to be increased dramatically. The purpose of this thesis is to investigate the performance of the high power 650-nm AlGaInP LDs with the consideration of thermal model and the theoretical analysis is done utilizing LASTIP simulation software.
In chapter one, the material characteristics of the AlGaInP LD will be first reviewed. In chapter two, the development history of the AlGaInP LD and several methods used to improve the output power of the AlGaInP LDs will be described.
In chapter three, we will demonstrate the characteristics of the high power AlGaInP LDs resulted from the carrier self-focusing phenomenon in the higher temperature regime by taking the thermal effect into account. In our previous work, we have demonstrated that there is an optimized cladding thickness for the high power AlGaInP LDs to reduce both the optical loss and thermal amount. The catastrophic optical damage (COD) levels and thus the output power of the AlGaInP LDs can be enhanced using the optimized cladding layer thickness. While we are doing analysis on this high power LD, we have found that the threshold currents of the AlGaInP LDs are degraded as expected; however, the slope efficiencies (S/E) are improved if compares with the performance without considering the thermal effect. Further investigation shows that with taking the thermal effect into account, the carriers are stayed underneath the electrode region, which is corresponding to the higher temperature region, at higher driving currents instead of spreading out of ridge waveguide region due to the reduction in carrier mobility at the higher temperature region. Moreover, the conduction band edges as well as the Fermi levels are modified at higher temperature region, which also cause the increase in carrier numbers. Therefore, this better carrier confinement in the lateral direction will cause more carriers available inside the quantum wells for stimulated emission to improve the S/E. In the end it is found that the optimized cladding layer thickness is about 1.7~1.9 um due to lower lattice temperatures and thus a better output performance.
In chapter four, we adopt linear graded cladding layer which means that the aluminum composition X of (AlxGa1-x)0.52In0.48P will grade from 1 to 0.7, the optical field will be concentrated on the active region therefore it can be achieved the better output performance of laser diodes without more thicker cladding layer thickness. When taking the thermal effect into account, the optimized cladding layer thickness is 1.3 um due to lower lattice temperatures.
Although at higher temperature region the carrier scattering time will decrease and result in the increase in total loss. However, according to the theoretical analysis the overall effect shows that the degradation in internal loss can be compensated by the carrier self-focusing effect. This carrier self-focusing phenomenon can be further confirmed by studying the near field patterns at different driving currents.
目錄 ………………………………………………………………Ⅲ
中文摘要 …………………………………………………………Ⅶ
英文摘要 …………………………………………………………Ⅸ
圖表索引 …………………………………………………………ⅩⅠ
第1章 磷化鋁鎵銦材料及應用介紹 1
1.1 前言 1
1.2 磷化鋁鎵銦材料介紹 3
1.2.1 晶格特性 3
1.2.2 能隙 4
1.2.3 折射率 5
1.3 磷化鋁鎵銦雷射二極體結構 6
1.4 磊晶方式介紹 9
第2章 高功率磷化鋁鎵銦雷射的發展與改進 13
2.1 磷化鋁鎵銦雷射二極體的發展歷史 13
2.2 提升磷化鋁鎵銦紅光雷射效率的設計方式 14
2.2.1 基板的選擇與摻雜 15
2.2.2 光功率密度的影響及活性區的設計 17
2.2.3 不同波導和批覆層厚度與光場的變化 20
2.2.4 降低電流密度 24
2.3 改善遠場垂直發散角 25
2.3.1 利用Mode expansion layer縮小遠場垂直發散角 26
2.3.2 利用n型步階披覆層(Two step n-cladding layer) 27
2.3.3 改變n型阻擋層(n-blocking layer)的成份 31
2.4 熱效應對磷化鋁鎵銦二極體的影響 34
2.4.1 不同成份半導體化合物的熱阻係數與熱導率係數 35
2.4.2 半導體材料計算熱通量的方式 40
第3章 高功率磷化鋁鎵銦雷射的熱自發聚焦效應與不同披覆層厚度的影響 47
3.1 研究動機 47
3.2 元件結構的設計與如何考慮熱效應 48
3.2.1 設計雷射二極體結構 48
3.2.2 考慮熱效應模擬的方式 51
3.2.3 熱傳導係數的計算方式 51
3.3 模擬分析不同披覆層厚度對雷射二極體的影響 54
3.3.1 披覆層厚度與光場在砷化鎵層的吸收 54
3.3.2 熱效應下光輸出功率與操作電流分析 56
3.3.3 有無熱效應下電子濃度分佈 59
3.3.4 有無熱效應下能帶分析 66
3.3.5 有無熱效應下溫度分佈 69
3.3.6 熱效應下不同的熱來源 72
3.3.7 不同披覆層厚度與熱效應模擬的結果 73
第4章 高功率磷化鋁鎵銦雷射採用漸變披覆層厚度與熱效應下的影響 75
4.1 披覆層漸變(Grading)對元件特性的影響 75
4.2 採用漸變披覆層光場的分佈與元件特性 75
4.3 熱效應模擬下採用漸變披覆層的元件特性分析 80
4.4 熱效應下漸變披覆層的元件晶格溫度與熱來源 82
4.5 不同漸變披覆層厚度與熱效應模擬的結果 84
第5章 結論 86

附錄A 模擬軟體簡介及其理論基礎…………………………………88
A.1 模擬軟體簡介……………………………………………… 88
A.2 模擬軟體的理論基礎……………………………………… 88
附錄B Heat flow計算…………………………………………………92
附錄C 半導體雷射的熱來源……………………………………… 92
附錄D 以PIC3D模擬量子井內側向能隙變化…………………… 99
第一章
[1] 葉春敏,21世紀紀錄媒體主角DVD,工業材料 1997 年 11 月,131期,71頁。
[2] T. Yagi, H. Nishiguchi, Y. Yoshida, M. Miyashita, M. Sasaki, Y. Sakamoto, K. Ono and Y. Mitsui. “High–Power High–Efficiency 660–nm Laser Diodes for DVD–R/RW,” Semiconductor Laser Conference, IEEE 18th International, pp. 129-130, 2002.
[3] M. F. Huang, H. C. Lee, J. K. Ho, H. C. Lin, W. H. Kuo, C. S. Cheng and Y. K. Kuo, “Laser diode for DVD pick–up head, ” Proceedings of SPIE., Vol. 3419, pp. 110-118, 1998.
[4] 史光國,現代半導體發光及雷射二極體材料技術,全華科技圖書, 3-33頁,2002年。
[5] B.G. Streetman, Solid State Electronic Devices, 4nd ed, Prentice-Hall, USA, 1995.
[6] S. M. Sze, Physics of Semiconductor Devices, 2nd ed, John Wiley, New York, 1981.
[7].P. S. Zory, Jr., Quantum Well Lasers, Academic Press, San Diego, 1993.
[8] A. Onton and R. J. Chicotka, “Conduction bands in In1-xAlxP,” J. Appl. Phys., Vol.41, pp. 4205-4207, 1970.
[9] R. J. Nelson and N. Holonyak, “Effect of crystal composition on the optimization of radiative recombination in N-free and N-doped In1-xGaxP light-emitting diodes,” J. Appl. Phys., Vol.47, pp. 1704-1707, 1976.
[10] D. B. Bour, “AlGaInP quantum well laser” in “Quantum well lasers,” edited by P. Zory, pp. 415-460, Academic Press Inc, 1993.
[11] H. Tanaka, Y. Kawamura, and H. Asahi, “Refractive indices of InGaAlP lattice matched to GaAs,” J. Appl. Phys., vol. 59, pp. 985-986, 1986.
[12] D.P. Bour and G. A. Evans, “Lateral mode discrimination in AlGaInP selectively buried ridge waveguide lasers,” IEEE PROCEEDING–J, Vol. 139, pp. 71-74, 1992.
[13] A. Valster, A. T. Meney, J. R. Downes, D. A. Faux, A. R. Adams, A. A. Brouwer and A. J. Corbijn, “Strain-Overcompensated GaInP-AlGaInP Quantum-Well Laser Structures for Improved Reliability at High-Output Powers,” IEEE J. Select. Topics Quantum Electron., Vol. 3, pp. 180-187, 1997.
[14] T. F. Kuech, D. J. Wolford, E. Veuhoff, V. Deline, P. M. Mooney, R. Potemski and Bradley, “Properties of high-purity AlxGa1-xAs grown by the metal-organic vapor-phase-epitaxy technique using methyl precursors,” J. Appl. Phys., Vol.62, pp. 632-643, 1987.
[15] Kenichi Iga and Susumu Kinoshita, Process Technology for Semiconductor Lasers: Crystal Growth and Microprocesses, Springer Verlag, Berlin, Germany, 1996.
第二章
[1] H. Asahi, Y. Kawamura and H. Nagai, “Molecular beam epitaxial growth of InGaAlP visible laser diodes operating at 0.66–0.68 μm at room temperature,” J. Appl. Phys., Vol. 54, pp. 6958-6964, 1983.
[2] I. Hino, A. Gomyo, K. Kobayashi, T. Suzuki and K. Nishida, “Room– temperature pulsed operation of AlGaInP/GaInP/AlGaInP double heterostructure visible light laser diodes grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 43, pp. 987-989. 1983.
[3] K. Kobayashi, S. Kawata, A. Gomyo, I. Hino and T. Suzuki, “Room– temperature CW operation of AlGaInP double–heterostructure visible lasers,” Electronics Lett., Vol. 21, pp. 931-932, 1985.
[4] M. Ikeda, Y. Mori, H. Sato, K. Kaneko and N. Watanabe, “Room– temperature continuous–wave operation of an AlGaInP double heterostructure laser grown by atmospheric pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 47, pp. 1027-1028, 1985.
[5] M. Ishikawa, Y. Ohba, H. Sugawara, M. Yamamoto and T. Nakanisi, “Room temperature CW operation of InGaP/InGaAlP visible light laser diodes on GaAs substrates grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 48, pp. 207-208, 1986.
[6] 張守進,劉醇星,姬梁文,半導體雷射,科學發展2002 年 1 月, 349期,14∼21頁。
[7] D. B. Bour, R. S. Geels, D. W. treat, T. L. Paoli, F. Ponce, R. L. Thomton, B. S. Krusor, R. D. Bringans and D. F. Welch, “Strained GaxIn1-xP/(AlGa)0.5In0.5P heterostructure and quantum well laser diodes,” IEEE J. Quantum Electron., Vol. 30, pp. 593-607, 1994.
[8] H. Hamada, M. Shono, S. Honda, R. Hiroyama, K. Yodoshi and T. Yamaguchi, “AlGaInP visible laser diodes grown on misoriented substrates,” IEEE J. Quantum Electron., Vol. 27, pp. 1483-1490, 1991.
[9] G. Hatakoshi, K.i Nitta, K. Itaya, Y. Nishikawa, Masayuki and M. Okajima, “High Power InGaAlP Laser Diodes for High Density Optical Recording,” Jpn. J. Appl. Phys., Vol. 31, pp. 501-507, 1992.
[10] A. Shima, H. Tada, T. Motoda, M. Tsugami, T. Utakouji and H. Higuchi, “Reliability study on 50~100 mW CW operation of 680 nm visible laser diodes with a window–mirror structure,” IEEE J. Select. Topics Quantum Electron., Vol. 3, pp. 443-449, 1997.
[11] 史光國,現代半導體發光及雷射二極體材料技術,全華科技圖書, 3–33頁,2002。
[12] N. Lichtenstein, R. Winterhoff, F. Scholz, H. Schweizer, S. Weiss, M. Hutter and H. Reichl, “The Impact of LOC Structures on 670 nm (Al)GaInP High-Power Lasers,” IEEE J. Select. Topics Quantum Electron., Vol. 6, pp. 564-570, 2000.
[13] T. Yagi, H. Nishiguchi, Y. Yoshida, M. Miyashita, M. Sasaki, Y. Sakamoto, K. Ono and Y. Mitsui, “High–power high–efficiency 660 nm laser diodes for DVD–R/RW,” IEEE J. Select. Topics Quantum Electron., Vol. 9, pp. 1260-1264, 2003.
[14] Y. Yoshida, M. Sasaki, K. Shibata, Z. Kawazu, K. Ono, H. Nishiguchi, T. Yagi and T. Nishimura, “Kink and Power Saturation of 660 nm AlGaInP Laser Diodes,” IEEE J. Quantum Electron., Vol. 41, pp. 828-832, 2005.
[15] P. M. Smowton, G. M. Lewis, M. Yin, H. D. Summers, G. Berry and C. C. Button, “650-nm Lasers with Narrow Far-Field Divergence
with Integrated Optical Mode Expansion Layers,” IEEE J. Quantum Electron., Vol. 5, pp. 735-739, 1999.
[16] S. Cho, Y. Park and Y. Kim, “660 nm GaInP–AlGaInP Quantum-Well Laser Diode Structures With Reduced Vertical Beam Divergence Angle,” IEEE P. Technology Lett., Vol. 17, pp. 534-536, 2005.
[17] B. Ma, S. Cho, C. Lee, Y. Kim and Y. Park, “High-Power 660-nm GaInP–AlGaInP Laser Diodes With Low Vertical Beam Divergence Angles,” IEEE P. Technology Lett., Vol. 17, pp. 1375-1377, 2005.
[18] B. Ma, S. Cho, C. Lee, S Lee, J. Kang, B.Kim, D. Kang, Y. Shin, Y. Kim and Y. Park, “Realization of High-Power Highly Efficient GaInP/AlGaInP Ridge Laser Diodes for Recordable/Rewritable Digital Versatile Discs,” Jpn. J. Appl. Phys., Vol. 45, pp. 774-777, 2006.
[19] R. Hiroyama, D. Inoue, Y. Nomura, M. Shono and M Sawada, “High-Power 660-nm-Band AlGaInP Laser Diodes with a Small Aspect Ratio for Beam Divergence,” Jpn. J. Appl. Phys., Vol. 41, pp. 1154-1157, 2002.
[20] R. Hiroyama, D. Inoue, S. Kameyama, A. Tajiri, M. Shono, M. Sawada and A. Ibarake “High-Power 200 mW 660 nm AlGaInP Laser Diodes with Low Operating Current,” Jpn. J. Appl. Phys., Vol. 43, pp. 1951-1955, 2004.
[21] H. Fujii, Y. Ueno and K. Endo, “Effect of thermal resistivity on the catastrophic optical damage power density of AlGaInP laser diodes,” Appl. Phys. Lett., Vol. 62, pp. 2114-2115, 1993.
[22] B. Abeles, “Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures,” Phys. Rev., Vol. 131, pp. 1906-1911, 1963.
[23] W. Nakwaski, “Thermal conductivity of binary, ternary, and quaternary III–V compounds,” J. Appl. Phys., Vol. 64, pp. 159-166, 1988.
[24] G. Wachutka, “Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling,” IEEE Transactions on Computer–Aided Design, Vol. 9, pp. 1141-1149, 1990.
[25] K. W. Boer, Survey of Semiconductor Physics, Vol. Ⅱ. New York:Van Nostrand Reinhold, 1992.
[26] J. Piprek, Semiconductor Optoelectronic Devices Introduction to Physics and Simulation, Academic Press, San Diego, pp. 141-148, 2003.
第三章
[1] T. Yagi, H. Nishiguchi, Y. Yoshida, M. Miyashita, M. Sasaki, Y. Sakamoto, K. Ono and Y. Mitsui, “High–Power High–Efficiency 660 nm Laser Diodes for DVD–R/RW,” Semiconductor Laser Conference, IEEE 18th International, pp. 129-130, 2002.
[2] 國立彰化師範大學光電科技研究所楊睿明碩士論文,考慮熱效應模式下的高功率磷化鋁鎵銦雷射二極體之研究分析,2005。
[3] G. Hatakoshi, K. Itaya, M. Ishikawa, M. Okajima and Y. Uematsu, “Short-Wavelength InGaAlP Visible Laser Diodes,” IEEE J. Quantum Electron., Vol. 27, pp. 1476-1482, 1991.
[4] M. F. Huang, H. C. Lee, J. K. Ho, H. C. Lin, C. S. Cheng, C. C. Kuo and Y. K. Kuo, “Laser diode for DVD pick–up head,” SPIE, Vol. 3419, pp.110-118, 1998.
[5] 史光國,現代半導體發光及雷射二極體材料技術,全華科技圖書, 3–33頁,2002。
[6] J. Piprek, Semiconductor Optoelectronic Devices Introduction to Physics and Simulation, Academic Press, San Diego, pp.141–148, 2003.
[7] T. Yagi, H. Nishiguchi, Y. Yoshida, M. Miyashita, M. Sasaki, Y. Sakamoto, K. Ono and Y. Mitsui, “High–power high–efficiency 660–nm laser diodes for DVD–R/RW,” IEEE J. Select. Topics Quantum Electron., Vol. 9, pp. 1260-1264, 2003.
第四章
[1] D. B. Bour “AlGaInP quantum well laser” in “Quantum well lasers” edited by P. Zory, pp.415-460, Academic Press Inc,1993.
[2] B. Lu, J.S. Osinski, E. Vail, B. Pezeshki, B. Schmitt and R.J. Lang, “High power 635 nm low-divergence ridge waveguide single mode lasers,” Electron. Lett., Vol.34, pp. 272-273, 1998.
[3] B. Lu, E. Vail, J.S. Osinski, E. Vail and B. Schmitt, “High-speed low-parasitic low-divergence 635 nm single mode lasers,” Electron. Lett., Vol.34, pp. 1750-1751, 1998.
[4] 國立彰化師範大學光電科技研究所邢晉源碩士論文,提升635 nm磷化鋁鎵銦雷射二極體的特徵溫度,2006。
附錄
[1] LASTIP User’s Manual Version, 2003.12, First Edition, Crosslight Software Inc.
[2] Crosslight Device Simulation Software–A General Description, Version 2003.12, First Edition, Crosslight Software Inc
[3] G. P. Agrawal, “Semiconductor Laser,” Van Nostrand Reinhold, N. Y., USA, pp. 58–61, 1993.
[4] J. Piprek, Semiconductor Optoelectronic Devices Introduction to Physics and Simulation, Academic Press, San Diego, pp.79–80, 2003.
[5] K. W. Boer, Survey of Semiconductor Physics, Vol.Ⅰ. New York:Van Nostrand Reinhold, 1990.
[6] http://www.answers.com/topic/peltier–seebeck–effect.
[7] O.Yu. Titov, G. de la Cruz Gonzalez, G.N. Logvinov, Yu.G. Gurevich, “New physical point of view on the Peltier effect,” Thermoelectrics, 1997. Proceedings ICT ' 97. XVI International Conference , pp. 661 – 663, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top