|
第一章 [1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913, 1987. [2] B. Geffroy, P. le Roy, and C. Prat, “Review-Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polymer International (in press), 0959–8103, 2006. [3] 宋志峰,“主動式OLED的未來發展”,「有機發光顯示器研究成果發表暨產學研座談」研討會論文集,國立成功大學,台南,2005年1月14日,第260頁。 [4] 橫山明聰,“白光OLED的發展技術”,「有機發光顯示器研究成果發表暨產學研座談」研討會論文集,國立成功大學,台南,2005年1月14日,第1頁。 [5] J. N. Bardsley, “International OLED technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 10, 3, 2004. [6] S. R. Forrest, “Active optoelectronics using thin-film organic semiconductors,” IEEE J. Sel. Top. Quantum Electron. 6, 1072, 2000. [7] 鄭同昇,“開發大型化OLED面板之關鍵技術”,「OLED面板大型化之發展契機」研討會,光電科技工業協進會,新竹,2004年8月18日。 [8] P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. on Electron Devices 44, 1188, 1997. [9] 劉佳明,“OLED顯示技術”,「有機發光顯示器研究成果發表暨產學研座談」研討會論文集,國立成功大學,台南,2005年1月14日,第82頁。 [10] 鐘嘉珽,“OLED磷光元件之技術簡介”,「有機發光顯示器研究成果發表暨產學研座談」研討會論文集,國立成功大學,台南,2005年1月14日,第36頁。 [11] G. Gu and S. R. Forrest, “Design of flat-panel displays based on organic light-emitting devices,” IEEE J. Select. Topics Quantum Electron. 4, 83, 1998. [12] P. L. Barny, V. Dentan, H. Facoetti, M. Vergnolle, G. Veriot, B. Servet, and D. Pribat, “Application of organic electroluminescent materials in visualisation,” Comptes Rendus de l'Academie des Science Series IV Physics. (Elsevier Science) 1, 493, 2000. [13] T. Shiga, H. Fujikawa, and Y. Taga, “Design of multiwavelength resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93, 19, 2003. [14] 朱崇玄,“The updated status for OLED”,「有機發光顯示器研究成果發表暨產學研座談」研討會論文集,國立成功大學,台南,2005年1月14日,第311頁。 [15] Z. Y. Xie, J. Feng, J. S. Huang, S. Y. Liu, Y. Wang, and J. C. Shen, “Tuning of chromaticity in organic multiple-quantum well white light emitting devices,” Synthetic Metals 108, 81, 2000. [16] Y. W. Ko, C.-H. Chung, J. H. Lee, Y.-H. Kim, C.-Y. Sohn, B.-C. Kim, C.-S. Hwang, Y.-H. Song, J. Lim, Y.-J. Ahn, G.-W. Kang, N. Lee, and C. Lee, “Efficient white organic light emission by single emitting layer,” Thin Solid Films 426, 246, 2003. [17] N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Select. Topics Quantum Electron. 8, 346, 2002. [18] G. Gu, G. Parthasarathy, P. E. Burrows, P. Tian, I. G. Hill, A. Kahn, and S. R. Forrest, “Transparent stacked organic light emitting devices. I. Design principles and transparent compound electrodes,” J. Appl. Phys. 86, 4067, 1999. [19] G. Gu, G. Parthasarathy, P. E. Burrows, P. Tian, I. G. Hill, A. Kahn, and S. R. Forrest, “Transparent stacked organic light emitting devices. II. Device performance and applications to displays,” J. Appl. Phys. 86, 4076, 1999. [20] 吳忠幟,“Top-emitting OLED devices and displays”,「有機發光顯示器研究成果發表暨產學研座談」研討會論文集,國立成功大學,台南,2005年1月14日,第340頁。 [21] W. Rieß, T. A. Beierlein, and H. Rie, “Optimizing OLED structures for α-Si display applications via combinatorial methods and enhanced outcoupling,” Phys. Stat. Sol. (a) 201, 1360, 2004. [22] C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507�{1, 2005. [23] C. J. Lee, R. B. Pode, D. G. Moon, J. I. Han, N. H. Park, S. H. Baik, and S. S. Ju, “On the problem of microcavity effects on the top emitting OLED with semitransparent metal cathode,” Phys. Stat. Sol. (a) 201, 1022, 2004. [24] T. N. Jackson, Y.-Y. Lin, D. J. Gundlach, and H. Klauk, “Organic thin-film transistors for organic light-emitting flat-panel display backplanes,” IEEE J. Select. Topics Quantum Electron. 4, 100, 1998. [25] M. Satoh, “Organic radical battery and its technology,” NEC J. of Adv. Tech. 2, 262, 2005. [26] P.-C. Kao, S.-Y. Chu, T.-Y. Chen, C.-Y. Zhan, F.-C. Hong, C.-Y. Chang, L.-C. Hsu, W.-C. Liao, and M.-H. Hon, “Fabrication of large-scaled organic light emitting devices on the flexible substrates using low-pressure imprinting lithography,” IEEE Trans. on Electron Devices 52, 1722, 2005. [27] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE J. Select. Topics Quantum Electron. 10, 107, 2004. [28] A. Köhler, J. S. Wilson, and R. H. Friend, “Fluorescence and phosphorescence in organic materials,” Adv. Eng. Mater. 4, 453, 2002. [29] 胡紀平,“噴墨技術在可印式顯示器之應用”,「平面顯示器技術」研討會,國立彰化師範大學,彰化,2005年9月7日。 [30] 葉永輝,“主動式OLED顯示技術趨勢”,「平面顯示器技術」研討會,國立彰化師範大學,彰化,2005年9月8日。 [31] C. C. Wu, S. D. Theiss, G. Gu, M. H. Lu, J. C. Sturm, S. Wagner, and S. R. Forrest, “Integration of organic LED's and amorphous si TFT's onto flexible and lightweight metal foil substrates,” IEEE Electron Device Lett. 18, 609, 1997. [32] 王鼎章,“全球OLED市場發展現況與趨勢”,「OLED市場及產業發展趨勢研討會」研討會,錸寶科技股份有限公司,新竹,2004年5月6日。 [33] W. Benzarti, F. Plais, A. D. Luca, and D. Pribat, “Compact analytical physical-based model of LTPS TFT for active matrix displays addressing circuits simulation and design,” IEEE Trans. on Electron Devices 51, 345, 2004.
第二章 [1] APSYS Version 2005.3 by Crosslight Software, Inc., Burnaby, Canada. (http://www.crosslight.com) [2] B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 89, 4575, 2001. [3] E. Tutiš, M. N. Bussac, B. Masenelli, M. Carrard, and L. Zuppiroli, “Numerical model for organic light-emitting diodes,” J. Appl. Phys. 89, 430, 2001. [4] Y. Preezant and N. Tessler, “Self-consistent analysis of the contact phenomena in low-mobility semiconductors,” J. Appl. Phys. 93, 2059, 2003. [5] C. R. Ou and W.-J. Yang, “Simulation and optimization of OLED device,” Proc. 9 th IDW, Hiroshima, Japan, 2002. [6] T. Ogawa, D.-C. Cho, K. Kaneko, T. Mori, and T. Mizutani, “Numerical analysis of the carrier behavior of organic light-emitting diode: comparing a hopping conduction model with a SCLC model,” Thin Solid Films 438�{439, 171, 2003. [7] I. Kamohara, M. Townsend, and B. Cottle, “Simulation of heterojunction organic thin film devices and exciton diffusion analysis in stacked-hetero device,” J. Appl. Phys. 97, 014501, 2005. [8] P. S. Davids, I. H. Campbell, and D. L. Smith, “Device model for single carrier organic diodes,” J. Appl. Phys. 82, 6319, 1997. [9] Y. Kawabe, M. M. Morrell, G. E. Jabbour, S. E. Shaheen, B. Kippelen, and N. Peyghambarian, “A numerical study of operational characteristics of organic light-emitting diodes,” J. Appl. Phys. 84, 5306, 1998. [10] H. Houili, E. Tutiš, H. Lütjens, M. N. Bussac, and L. Zuppiroli, “MOLED: Simulation of multilayer organic light emitting diodes,” Computer Phys. Commun. 156, 108, 2003. [11] W. Brutting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based on molecular materials,” Organic Electron. 2, 1, 2001. [12] D. Berner, H. Houili, W. Leo, and L. Zuppiroli. Walker, “Review: Insights into OLED functioning through coordinated experimental measurements and numerical model simulations,” Phys. Stat. Sol. (a) 202, 9, 2005. [13] M. A. Webster, J. L. Auld, S. J. Martin, and A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300, 2004. [14] G. G. Malliaras and J. C. Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys. 83, 5399, 1998. [15] B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723, 2003. [16] J. Yang and J. Shen, “Effects of the hole barrier in bilayer organic light-emitting devices,” J. Phys. D: Appl. Phys. 33, 1768, 2000. [17] A. B. Walker, A. Kambili, and S. J. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys.: Condens. Matter 14, 9825, 2002. [18] I. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, “The Schottky energy barrier dependence of charge injection in organic light-emitting diodes,” Appl. Phys. Lett. 72, 1863, 1998. [19] C.-C. Lee, M.-Y. Chang, Y.-D. Jong, T.-W. Huang, C.-S. Chu, and Y. Chang, “Numerical simulation of electrical and optical characteristics of multilayer organic light-emitting devices,” Jpn. J. Appl. Phys. 43, 7560, 2004. [20] R. L. Martin, J. D. Kress, I. H. Campbell, and D. L. Smith, “Molecular and solid-state properties of tris-(8-hydroxyquinolate)- aluminum,” Phys. Rev. B 61, 15804, 2000. [21] S. Barth, P. Müller, H. Riel, P. F. Seidler, W. Rieß, H. Vestweber, and H. Bassler, “Electron mobility in tris(8-hydroxy-quinoline)aluminum thin films determined via transient electroluminescence from single- and multilayer organic light-emitting diodes,” J. Appl. Phys. 89, 3711, 2001. [22] I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, “Consistent time-of-flight mobility measurements and polymer light-emitting diode current–voltage characteristics,” Appl. Phys. Lett. 74, 2809, 1999. [23] A. G. Mückl, S. Berleb, W. Brütting, and M. Schwoerer, “Transient electroluminescence measurements on organic heterolayer light emitting diodes,” Synthetic Metals 111�{112, 91, 2000. [24] S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Organic Electron. 3, 129, 2002. [25] S. J. Martin, A. B. Walker, A. J. Campbell, and D. D. C. Bradley, “Electrical transport characteristics of single-layer organic devices from theory and experiment,” J. Appl. Phys. 98, 063709, 2005. [26] J.-H. Lee, N. G. Park, Y. S. Kim, C.-H. Suh, J.-H. Shim, Y. K. Kim, “Steady-state analysis for contact barrier effects in metal/organic/metal structure using numerical bipolar transport simulation,” Current Appl. Phys. 5, 9, 2005. [27] L. Yan, M. G. Mason, C. W. Tang, and Y. Gao, “Photoemission study of energy alignment at the metal/Alq3 interfaces,” Appl. Surface Sci. 175�{176, 412, 2001. [28] H. Ishii, H. Oji, E. Ito, N. Hayashi, D. Yoshimura, and K. Seki, “Energy level alignment and band bending at model interfaces of organic electroluminescent devices,” J. Luminescence 87�{89, 61, 2000. [29] E. Tutiš, M.-N. Bussac, and L. Zuppiroli, “Image force effects at contacts in organic light-emitting diodes,” Appl. Phys. Lett. 75, 3880, 1999. [30] J. Chan, A. D. Rakić, Y. T. Yeow, and A. B. Djurišić, “Electrical and pptical simulation of tris (8-hydroxyquinoline) aluminium-based microcavity organic light emitting diode (MOLED),” Conference COMMAD, 53, 2004. [31] M.-H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: Modeling and experiment,” J. Appl. Phys. 91, 595, 2002. [32] S.-J. Lee, A. Badano, and J. Kanicki, “Monte carlo modeling of the light transport in polymer light-emitting devices on plastic substrates,” IEEE J. Sel. Top. Quantum Electron. 10, 37, 2004. [33] M. Hoffmann and Z. G. Soos, “Optical absorption spectra of the Holstein molecular crystal for weak and intermediate electronic coupling,” Phys. Rev. B 66, 024305, 2002. [34] C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Tech. LT�{4, 288, 1986. [35] F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry–Perot micro-cavities based on Si3N4 waveguides,” Photonics and Nanostructures 4, 41, 2006. [36] K. Imaizumi, K. Kaneko, T. Mori, and T. Mizutani, “Analysis of electoluminescence mechanisms in N,N’-disphenyl-N,N’- bis(3-methylphenyl)-1,1’-disphenyl-4,4’-diamine/hydroxyquinoline aluminum bilayer organic light-emitting diode by bipolar hopping conduction,” Jpn. J. Appl. Phys. 41, 366, 2002. [37] J. Staudigel, M. Stößel, F. Steuber, and J. Simmerer, “A quantitative numerical model of multilayer vapor-deposited organic light emitting diodes,” J. Appl. Phys. 86, 3895, 1999. [38] L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells,” Phys. Rev. B 72, 085205, 2005. [39] B. K. Crone, P. S. Davids, I. H. Campbell, and D. L. Smith, “Device model investigation of bilayer organic light emitting diodes,” J. Appl. Phys. 87, 1974, 2000. [40] C. Pflumm, C. Karnutsch, M. Gerken, and U. Lemmer, “Parametric study of modal gain and threshold power density in electrically pumped single-layer organic optical amplifier and laser diode structures,” IEEE J. Quantum Electron. 41, 316, 2005. [41] U. Ravaioli, “Advanced theory of semiconductors and semiconductor devices numerical methods and simulation: Review of conventional semiconductor device models based on partial differential equations,” http://www-ncce.ceg.uiuc.edu/tutorials/bte_dd/html/bte_dd.html, 1994. (2006年網路資料) [42] M. S. Obrecht, M. I. Elmasry, and E. L. Heasell, “TRASIM: Compact and efficient two-dimensional transient simulator for arbitrary planar semiconductor devices,” IEEE Trans. on computer-aided design of integrated circuits and systems. 14, 447, 1995. [43] C. M. Snowden, “Semiconductor device modelling,” Rep. Prog. Phys. 48, 223, 1985. [44] M. Bahl, N. C. Panoiu, and R. M. Osgood, “Modeling ultrashort field dynamics in surface emitting lasers by using finite-difference time-domain method,” IEEE J. Quantum Electron. 41, 1244, 2005. [45] S. K. Saha, Y. K. Su, and F. S. Juang, “Temperature dependence of electroluminescence in a tris-(8-Hydroxy) quinoline aluminum (Alq3) light emitting diode,” IEEE J. Quantum Electron. 37, 807, 2001. [46] T. Dobbertin, E. Becker, T. Benstem, G. Ginev, D. Heithecker, H.-H. Johannes, D. Metzdorf, H. Neuner, R. Parashkov, and W. Kowalsky, “OLED matrix displays: In-line process technology and fundamentalss,” Thin Solid Films 442, 132, 2003. [47] M. Stößel, J. Staudigel, F. Steuber, J. Simmerer, and A. Winnacker, “Impact of the cathode metal work function on the performance of vacuum-deposited organic light emitting-devices,” Appl. Phys. A 68, 387, 1999. [48] P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, “Electron and hole transport in poly(p-phenylene vinylene) devices,” Appl. Phys. Lett. 68, 3308, 1996. [49] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, “Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices,” J. Appl. Phys. 79, 7991, 1996. [50] T. Mori, T. Ogawa, Do.-C. Cho, and T. Mizutani, “A discussion of conduction in organic light-emitting diodes,” Appl. Surface Sci. 212�{213, 458, 2003.
第三章 [1] S.-T. Lim, M. H. Chun, K. W. Lee, and D.-M. Shin, “Organic light emitting diodes with red emission using (2,6-dimethyl-4H-pyran-4'-ylidene) malononitrile moiety,” Opt. Mater. 21, 217, 2002. [2] B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723, 2003. [3] M. Hoffmann and Z. G. Soos, “Optical absorption spectra of the Holstein molecular crystal for weak and intermediate electronic coupling,” Phys. Rev. B 66, 024305, 2002. [4] L. Zugang and H. Nazare, “White organic light-emitting diodes emitting from both hole and electron transport layers,” Synthetic Metals 111�{112, 47, 2000. [5] B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 89, 4575, 2001. [6] S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Organic Electron. 3, 129, 2002. [7] J. H. Lee, S. W. Kim, S. H. Ju, W. G. Lee, J. S. Choi, Y. K. Kim, and W. Y. Kim, “Emission shift by recombination effect in a three-layered oeld,” Synthetic Metals 111�{112, 63, 2000. [8] Z. Liu, J. Pinto, J. Soares, and E. Pereira, “Efficient multilayer organic light emitting diode,” Synthetic Metals 122, 177, 2001. [9] M. Stößel, J. Staudigel, F. Steuber, J. Simmerer, and A. Winnacker, “Impact of the cathode metal work function on the performance of vacuum-deposited organic light emitting-devices,” Appl. Phys. A 68, 387, 1999. [10] M. Stößel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, A. Winnacker, H. Neuner, D. Metzdorf, H.-H. Johannes, and W. Kowalsky, “Electron injection and transport in 8-hydroxyquinoline aluminum,” Synthetic Metals 111�{112, 19, 2000. [11] K. Ihm, T.-H. Kang, K.-J. Kim, C.-C. Hwang, Y.-J. Park, K.-B. Lee, B. Kim, C.-H. Jeon, C.-Y. Park, K. Kim, and Y.-H. Tak, “Band bending of LiF/Alq3 interface in organic light-emitting diodes,” Appl. Phys. Lett. 83, 2949, 2003. [12] D. Grozea, A. Turak, X. D. Feng, Z. H. Lu, D. Johnson, and R. Wood, “Chemical structure of Al/LiF/Alq interfaces in organic light-emitting diodes,” Appl. Phys. Lett. 81, 3173, 2002. [13] M. G. Mason, C. W. Tang, L.-S. Hung, P. Raychaudhuri, J. Madathil, D. J. Giesen, L. Yan, Q. T. Le, Y. Gao, S.-T. Lee, L. S. Liao, L. F. Cheng, W. R. Salaneck, D. A. dos Santos, and J. L. Bredas, “Interfacial chemistry of Alq3 and LiF with reactive metals,” J. Appl. Phys. 89, 2756, 2001. [14] B. J. Chen, X. W. Sun, and K. S. Wong, “Enhanced performance of tris-(8-hydroxyquinoline) aluminum-based organic light-emitting devices with LiF/Mg:Ag/Ag cathode,” Opt. Express 13, 26, 2005. [15] H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys. 89, 420, 2001. [16] B. J. Chen, X. W. Sun, and S. T. Tan, “Transparent organic light-emitting devices with LiF/Mg:Ag cathode,” Opt. Express 13, 937, 2005. [17] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913, 1987. [18] S. Y. Park, C. H. Lee, W. J. Song, and C. Seoul, “Enhanced electron injection in organic light-emitting devices using Al/LiF electrodes,” Current Appl. Phys. 1, 116, 2001. [19] D. V. Khramtchenkov, H. Bassler, and V. I. Arkhipov, “A model of electroluminescence in organic double-layer light-emitting diodes,” J. Appl. Phys. 79, 9283, 1996. [20] J. Chan, A. D. Rakić , C. YKwong, Z. T. Liu, A. B. Djurišić, M. L. Majewski, W. KChan, and P. C. Chui, “Device optimization of tris-aluminum (Alq3) based bilayer organic light emittingdiode structures,” Smart Mater. Struct. 15, S92, 2006. [21] D.-S. Jeong, D. K. Hwang, and S. Im, “Advantages of energetic cluster evaporation for organic light emitting devices,” J. Vac. Sci. Technol. B 22, 539, 2004. [22] Hyundai Electronics Industries Co., Ltd., Koera, “Side-by-side patterned RGB domain color device to optimize full color OLED,” http://www.hyundaiq.com/, 2004. (2005年網路資料) [23] P. E. Burrows and S. R. Forrest, “Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices,” Appl. Phys. Lett. 64, 2285, 1994. [24] J. Kido, M. Kohda, K. Okuyama, and K. Nagai, “Organic electroluminescent devices on molecularly doped polymers,” Appl. Phys. Lett. 61, 761, 1992. [25] H. Antoniadis, J. N. Miller, D. B. Roitman, and I. H. Cambell, “Effects of hole carrier injection and transport in organic light-emitting diodes,” IEEE Trans. on Electron Devices 44, 1289, 1997. [26] W. Rieß, T. A. Beierlein, and H. Rie, “Optimizing OLED structures for α-Si display applications via combinatorial methods and enhanced outcoupling,” Phys. Stat. Sol. (a) 201, 1360, 2004. [27] J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94, 7764, 2003. [28] J. Shen and J. Yang, “Carrier transport in organic alloy light emitting diodes,” J. Appl. Phys. 87, 3891, 2000. [29] Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminum/aromatic diamine and its application for an electroluminescent diode,” J. Phys.: Condens. Matter 5, 7979, 1993. [30] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, “Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices,” J. Appl. Phys. 79, 7991, 1996. [31] M. A. Webster, J. L. Auld, S. J. Martin, A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300, 2004. [32] C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610, 1989. [33] V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096, 1998. [34] D. Berner, H. Houili, W. Leo, and L. Zuppiroli, “Insights into OLED functioning through coordinated experimental measurements and numerical model simulations,” Phys. Stat. Sol. (a) 202, 9, 2005. [35] M. B. Khalifa, D. Vaufrey, and J. Tardy, “Opposing influence of hole blocking layer and a doped transport layer on the performance of heterostructure OLEDs,” Organic Electron. 5, 187, 2004. [36] V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71, 2575, 1997. [37] T. Mori, K. Obata, and T. Mizutani, “Electroluminescence of organic light emitting diodes with alternately deposited dye-doped aluminium quinoline and diamine derivative,” J. Phys. D: Appl. Phys. 32, 1198, 1999. [38] A. A. Shoustikov, Y. You, and M. E. Thompson, “Electroluminescence color tuning by dye doping in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 4, 3, 1998. [39] K. Read, H. S. Karlsson, M. M. Murnane, H. C. Kapteyn, and R. Haight, “Excitation dynamics of dye doped tris(8-hydroxy quinoline)aluminum films studied using time-resolved photoelectron spectroscopy,” J. Appl. Phys. 90, 294, 2001. [40] K. Yamashita, J. Futenma, T. Mori, and T. Mizutani, “Effect of location and width of doping region on efficiency in doped organic light-emitting diodes,” Synthetic Metals 111�{112, 87, 2000. [41] Z. H. Kafafi, H. Murata, L. C. Picciolo, H. Mattoussi, C. D. Merritt, Y. Iizumi, and J. Kido, “Electroluminescent properties of functional π-electron molecular systems,” Pure Appl. Chem. 71, 2085, 1999. [42] B. Ruhstaller, J. C. Scott, P. J. Brock, U. Scherf, and S. A. Carter, “Bias-tuned reduction of self-absorption in polymer blend electroluminescence,” Chem. Phys. Lett. 317, 238, 2000. [43] C. Qiu, H. Peng, H. Chen, Z. Xie, M. Wong, and H. S. Kwok, “Top-emitting OLED using praseodymium oxide coated platinum as hole injectors,” IEEE Trans. on Electron Devices 51, 1207, 2004. [44] C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Tech. LT�{4, 288, 1986. [45] C.-L. Lin, H.-W. Lin, and C.-C. Wu, “Examining microcavity organic light-emitting devices having two metal mirrors,” Appl. Phys. Lett. 87, 021101, 2005. [46] C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507, 2005. [47] C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, “Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode,” Appl. Phys. Lett. 88, 081114, 2006. [48] C.-C. Wu, C.-L. Lin, P.-Y. Hsieh, and H.-H. Chiang, “Methodology for optimizing viewing characteristics of top-emitting organic light-emitting devices,” Appl. Phys. Lett. 84, 3966, 2004. [49] F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry–Perot micro-cavities based on Si3N4 waveguides,” Photonics and Nanostructures 4, 41, 2006. [50] C. J. Lee, R. B. Pode, D. G. Moon, J. I. Han, N. H. Park, S. H. Baik, and S. S. Ju, “On the problem of microcavity effects on the top emitting OLED with semitransparent metal cathode,” Phys. Stat. Sol. (a) 201, 1022, 2004. [51] F. Jean, J.-Y. Mulot, B. Geffroy, C. Denis, and P. Cambon, “Microcavity organic light-emitting diodes on silicon,” Appl. Phys. Lett. 81, 1717, 2002.
第四章 [1] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283, 1900, 1999. [2] S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Organic Electron. 3, 129, 2002. [3] S. Jung, N. G. Park, M. Y. Kwak, B. O. Kim, K. H. Choi, Y. J. Cho, Y. K. Kim, and Y. S. Kim, “Surface treatment effects of indium–tin oxide in organic light-emitting diodes,” Opt. Mater. 21, 235, 2002. [4] S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69, 2160, 1996. [5] Y. Hamada, T. Sano, K. Shibata, and K. Kuroki, “Influence of the emission site on the running durability of organic electroluminescent devices,” Jpn. J. Appl. Phys. 34, L824, 1995. [6] Y. B. Yoon, H. W. Yang, D. C. Choo, T. W. Kim, and H. S. Oh, “Luminescence mechanisms of green and blue organic light-emitting devices utilizing hole-blocking layers,” Solid State Commun. 134, 367, 2005. [7] Y.-F. Liew, F. Zhu, S.-J. Chua, and J.-X. Tang, “Tris-(8-hydroxyquinoline)aluminum-modified indium tin oxide for enhancing the efficiency and reliability of organic light-emitting devices,” Appl. Phys. Lett. 85, 4511, 2004. [8] Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminum/aromatic diamine and its application for an electroluminescent diode,” J. Phys.: Condens. Matter 5, 7979, 1993. [9] T. Mori, K. Obata, and T. Mizutani, “Electroluminescence of organic light emitting diodes with alternately deposited dye-doped aluminium quinoline and diamine derivative,” J. Phys. D: Appl. Phys. 32, 1198, 1999. [10] Z. Y. Xie, J. S. Huang, C. N. Li, S. Y. Liu, Y. Wang, Y. Q. Li, and J. C. Shen, “White light emission induced by confinement in organic multiheterostructures,” Appl. Phys. Lett. 74, 4511, 1999. [11] K. L. Tong, S. K. So, H. F. Ng, L. M. Leung, M. Y. Yeung, and C. F. Lo, “Transport and luminescence in naphthyl phenylamine model compounds,” Synthetic Metals 147, 199, 2004. [12] M. A. Webster, J. L. Auld, S. J. Martin, and A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300, 2004. [13] B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 89, 4575, 2001. [14] P. E. Burrows and S. R. Forrest, “Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices,” Appl. Phys. Lett. 64, 2285, 1994. [15] L. Zugang and H. Nazare, “White organic light-emitting diodes emitting from both hole and electron transport layers,” Synthetic Metals 111�{112, 4751, 2000. [16] P. Cusumano, F. Buttitta, A. D. Cristofalo, and C. Cali, “Effect of driving method on the degradation of organic light emitting diodes,” Synthetic Metals 139, 657, 2003. [17] H. Aziz, Z. Popovic, C. P. Tripp, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation processes at the cathode/organic interface in organic light emitting devices with Mg:Ag cathodes,” Appl. Phys. Lett. 72, 2642, 1998. [18] E. M. Han, J. J. Yun, G. C. Oh, S. M. Park, N. K. Park, Y. S. Yoon, and M. Fujihira, “Enhanced stability of organic thin films for electroluminescence by photoirradiation,” Opt. Mater. 21, 243, 2002. [19] Y. Xiaohui, H. Yulin, H. Yanbing, X. Zheng, and X. Xurong, “Effect of TPD films as electron blocking layer on EL spectrum,” Displays 21, 61, 2000. [20] M. Pfeiffer, K. Leo, X. Zhou, J. S. Huang, M. Hofmann, A. Werner, and J. Blochwitz-Nimoth, “Doped organic semiconductors: Physics and application in light emitting diodes,” Organic Electron. 4, 89, 2003. [21] Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Observation of spectral narrowing and emission energy shift in organic electroluminescent diode utilizing 8-hydroxyquinoline aluminum/aromatic diamine multilayer structure,” Appl. Phys. Lett. 63, 1871, 1993. [22] C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610, 1989. [23] J. Chan, A. W. Lu, A. M. C. Ng, A. B. Djurišić, and A. D. Rakić, “Organic quantum well light emitting diodes,” Proc. SPIE 6038, 360, 2006. [24] R. S. Deshpande, V. Bulovic, and S. R. Forrest, “White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer,” Appl. Phys. Lett. 75, 888, 1999. [25] J. Shen and J. Yang, “Carrier transport in organic alloy light emitting diodes,” J. Appl. Phys. 87, 3891, 2000. [26] H. Murata, C. D. Merritt, and Z. H. Kafafi, “Emission mechanism in rubrene-doped molecular organic light-emitting diodes: direct carrier recombination at luminescent centers,” IEEE J. Sel. Top. Quantum Electron. 4, 119, 1998. [27] J. Chan, A. W. Lu, C. H. Cheung, A. M. C. Ng, A. B. Djurišić, Y. T. Yeow, and A. D. Rakić, “Cavity design and optimization for organic microcavity OLEDs,” Proc. SPIE 6038, 464, 2006. [28] Y. Qiu, Y. Gao, P. Wei, and L. Wang, “Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells,” Appl. Phys. Lett. 80, 2628, 2002. [29] Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, “High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12- tetraphenylnaphthacene multiple quantum wells,” Appl. Phys. Lett. 81, 3540, 2002. [30] H. An, B. Chen, J. Hou, J. Shen, and S. Liu, “Exciton confinement in organic multiple quantum well structures,” J. Phys. D: Appl. Phys. 31, 1144, 1998. [31] F. F. So, S. R. Forrest, Y. Q. Shi, and W. H. Steier, “Quasi-epitaxial growth of organic multiple quantum well structures by organic molecular beam deposition,” Appl. Phys. Lett. 56, 674, 1990. [32] Y. Shao and Y. Yang, “Naturally formed graded junction for organic light-emitting diodes,” Appl. Phys. Lett. 83, 2453, 2003. [33] A. B. Chwang, R. C. Kwong, and J. J. Brown, “Graded mixed-layer organic light-emitting devices,” Appl. Phys. Lett. 80, 725, 2002. [34] D. Ma, C. S. Lee, S. T. Lee, and L. S. Hung, “Improved efficiency by a graded emissive region in organic light-emitting diodes,” Appl. Phys. Lett. 80, 3641, 2002. [35] T. Mori, H. Tsuge, and T. Mizutani, “Enhancement of electroluminescence efficiency for organic light-emitting-diodes due to the introduction of a co-evaporated layer,” J. Phys. D: Appl. Phys. 32, L65, 1999. [36] G. Vamvounis, H. Aziz, N.-X. Hu, and Z. D. Popovic, “Temperature dependence of operational stability of organic light emitting diodes based on mixed emitter layers,” Synthetic Metals 143, 69, 2004. [37] Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and characteristics of 8-hydroxyquinoline aluminum/aromatic diamine organic multiple quantum well and its use for electroluminescent diode,” Appl. Phys. Lett. 62, 3250, 1993. [38] C.-Y. Yang, Y.-S. Tsai, F.-S. Juang, Y.-K. Su, D. Lin, C.-H. Chu, and Y.-T. Chiu, “Separately doped structures for red organic light-emitting diodes,” Jpn. J. Appl. Phys. 44, 2833, 2005.
|