跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 02:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張永政
研究生(外文):Yung-Cheng Chang
論文名稱:有機發光二極體之結構設計與光電特性分析
論文名稱(外文):Numerical Studies on Structural and Optoelectronic Properties of Organic Light-Emitting Diodes
指導教授:郭艷光
指導教授(外文):Yen-Kuang Kuo
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:光電科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:118
中文關鍵詞:有機發光二極體數值模擬
外文關鍵詞:OLEDNumerical analysisAPSYS
相關次數:
  • 被引用被引用:4
  • 點閱點閱:654
  • 評分評分:
  • 下載下載:119
  • 收藏至我的研究室書目清單書目收藏:0
有機發光二極體(Organic Light-Emitting Diode, OLED)影像顯示技術跨躍式的進程,帶動了顯示器產業的蓬勃發展,其為近幾年平面顯示器領域中的新起之秀。利用OLED元件與技術所製成的次世代顯示器具有其它顯示器所無法兼具的優點,如輕薄、可撓曲、易攜、全彩、高亮度、高對比、省電、視角寬廣、自發光及高應答速度等。OLED顯示器替未來人機互動的介面開啟了新的視野,有機發光二極體的結構設計在OLED顯示器邁向量產的過程中扮演著舉足輕重的角色。本論文以理論數值計算的方式進行OLED之結構設計與光電特性分析,以求得最佳化高效率之OLED元件。
在本論文的第一章對有機發光二極體之優點、缺點及結構特性作介紹,並藉由OLED的產品開發面來描述有機發光二極體之發展。此外,亦從OLED與LCD的比較來瞭解此次世代顯示技術。
在第二章,嘗試去建立OLED的電特性模型,數值方法求解和材料參數在Matlab和Mathcad中被定義,以瞭解微觀的OLED物理特性。另外,本論文所使用的APSYS模擬軟體內之光與電特性模型亦被探討。
第三章探討紅光與綠光OLED結構及top-emitting OLED結構。結構的光電特性包含材料的吸收與發光頻譜、再結合速率、自發放射速率、L-J-V曲線等的最佳化模擬結果將被呈現。
載子的平衡於有機層界面影響著OLED的電致發光效率。在第四章,由Alq3/TPD異質結構所組成的多層OLED元件之光電特性,將藉由電洞阻礙層的加入及調變有機層厚度與位置,來作最佳化探討。此外,多位能井載子侷限型結構的數值模擬最佳化亦被分析與討論。
Organic Light-Emitting Diode (OLED) has been extensively developed in the past few years. The next generation displays designed by OLED technology have advantages over other displays such as CRT, LCD, and PDP in thickness, weight, brightness, response time, viewing angle, contrast, driving power, flexibility, and capability of self-emission. The OLED display has provided a brand new vision for the human-computer interaction in the future. The structural design of OLED is important because it might effectively increase the possibility of mass production. In this thesis, the optimizations of the optical and electronic properties of multilayer OLED devices are numerically studied.
In chapter 1, the characteristics of OLED, including the advantages, disadvantages and structures, are introduced. Moreover, the development of OLED and comparison between OLED and LCD are also disscussed.
In chapter 2, we attempt to setup the electronic model to help realize the microscopic physics of OLED. Furthermore, we discuss the optoelectronic model of the APSYS simulation program which we used to do simulation.
In chapter 3, we investigate the photoelectric characteristics, including the recombination rate, spontaneous emission rate, and L-J-V curves, for the green- and red-emitting OLED structures and top-emitting OLEDs.
The carrier balance at the interface between organic layers affects the electroluminescence (EL) efficiency of OLED. In chapter 4, the optoelectronic properties of the Alq3/TPD heterostructure based multilayer OLED with various thicknesses and positions of hole blocking layer are numerically studied. Finally, optimal design of the multi-quantum-well OLED structure under study is attempted.
目錄 …………………………………………………………… I
中文摘要 ……………………………………………………… IV
英文摘要 ……………………………………………………… V
圖表索引 ……………………………………………………… VI
第一章 有機發光二極體之特性與發展 …………………… 1
1.1 前言 …………………………………………………… 1
1.2 有機發光二極體之特性 ……………………………… 2
1.2.1 有機發光二極體之優點 ………………………… 3
1.2.2 有機發光二極體之缺點 ………………………… 5
1.2.3 有機發光二極體之結構 ………………………… 6
1.3 有機發光二極體之發展 ……………………………… 10
1.3.1 白光暨全彩有機發光二極體 …………………… 10
1.3.2 主動式有機發光二極體 ………………………… 13
1.3.3 Top-emitting有機發光二極體 ………………… 15
1.3.4 Flexible有機發光二極體 ……………………… 16
1.3.5 有機發光二極體之產品開發 …………………… 17
1.4 有機發光二極體與液晶顯示器之比較 ……………… 21
1.5 結論 …………………………………………………… 25
參考文獻 …………………………………………………… 26
第二章 有機發光二極體模型建立與數值方法求解 ……… 31
2.1 前言 …………………………………………………… 31
2.2 模型建立 ……………………………………………… 31
2.2.1 載子於有機層材料間的傳輸 …………………… 33
2.2.2 載子於電極的注入與結構內的激子形成 ……… 36
2.2.3 光特性模型的探討 ……………………………… 40
2.3 數值方法求解及參數定義 …………………………… 41
2.4 PPV元件的電性模擬與探討 ………………………… 43
2.5 結論 …………………………………………………… 50
參考文獻 …………………………………………………… 51
第三章 綠光與紅光有機發光二極體結構之特性分析 …… 59
3.1 前言 …………………………………………………… 59
3.2 各功能層材料使用及模擬參數設定 ………………… 59
3.3 一般雙層結構與含Al/LiF/Alq3結構之探究 ……… 62
3.4 綠光結構之模擬與分析 ……………………………… 65
3.5 紅光結構之模擬與分析 ……………………………… 70
3.6 Top-emitting有機發光二極體之模擬與分析 ……… 74
3.7 結論 …………………………………………………… 81
參考文獻 …………………………………………………… 82
第四章 多層Alq3/TPD異質結構之特性分析 ……………… 90
4.1 前言 …………………………………………………… 90
4.2 單位能井載子侷限型結構之模擬結果與分析 ……… 92
4.3 雙位能井載子侷限型結構之模擬結果與分析 ……… 101
4.4 多位能井載子侷限型結構之模擬結果與分析 ……… 107
4.5 結論 …………………………………………………… 111
參考文獻 …………………………………………………… 112
第五章 結論 ………………………………………………… 118
附錄A 論文發表清單 ………………………………………… i
A.1 Proceedings of SPIE (EI)論文:1篇 ……………… i
A.2 研討會論文:6篇 ……………………………………… i
附錄B MATLAB與Mathcad程式碼 ……………………………… iii
B.1 Organic light-emitting diodes (MATLAB) ………… iii
B.2 Polymer light-emitting diodes (Mathcad) ……… iv
第一章
[1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913, 1987.
[2] B. Geffroy, P. le Roy, and C. Prat, “Review-Organic light-emitting diode (OLED) technology: materials, devices and display technologies,” Polymer International (in press), 0959–8103, 2006.
[3] 宋志峰,“主動式OLED的未來發展”,「有機發光顯示器研究成果發表暨產學研座談」研討會論文集,國立成功大學,台南,2005年1月14日,第260頁。
[4] 橫山明聰,“白光OLED的發展技術”,「有機發光顯示器研究成果發表暨產學研座談」研討會論文集,國立成功大學,台南,2005年1月14日,第1頁。
[5] J. N. Bardsley, “International OLED technology roadmap,” IEEE J. Sel. Top. Quantum Electron. 10, 3, 2004.
[6] S. R. Forrest, “Active optoelectronics using thin-film organic semiconductors,” IEEE J. Sel. Top. Quantum Electron. 6, 1072, 2000.
[7] 鄭同昇,“開發大型化OLED面板之關鍵技術”,「OLED面板大型化之發展契機」研討會,光電科技工業協進會,新竹,2004年8月18日。
[8] P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving full-color organic light-emitting devices for lightweight, flat-panel displays,” IEEE Trans. on Electron Devices 44, 1188, 1997.
[9] 劉佳明,“OLED顯示技術”,「有機發光顯示器研究成果發表暨產學研座談」研討會論文集,國立成功大學,台南,2005年1月14日,第82頁。
[10] 鐘嘉珽,“OLED磷光元件之技術簡介”,「有機發光顯示器研究成果發表暨產學研座談」研討會論文集,國立成功大學,台南,2005年1月14日,第36頁。
[11] G. Gu and S. R. Forrest, “Design of flat-panel displays based on organic light-emitting devices,” IEEE J. Select. Topics Quantum Electron. 4, 83, 1998.
[12] P. L. Barny, V. Dentan, H. Facoetti, M. Vergnolle, G. Veriot, B. Servet, and D. Pribat, “Application of organic electroluminescent materials in visualisation,” Comptes Rendus de l'Academie des Science Series IV Physics. (Elsevier Science) 1, 493, 2000.
[13] T. Shiga, H. Fujikawa, and Y. Taga, “Design of multiwavelength resonant cavities for white organic light-emitting diodes,” J. Appl. Phys. 93, 19, 2003.
[14] 朱崇玄,“The updated status for OLED”,「有機發光顯示器研究成果發表暨產學研座談」研討會論文集,國立成功大學,台南,2005年1月14日,第311頁。
[15] Z. Y. Xie, J. Feng, J. S. Huang, S. Y. Liu, Y. Wang, and J. C. Shen, “Tuning of chromaticity in organic multiple-quantum well white light emitting devices,” Synthetic Metals 108, 81, 2000.
[16] Y. W. Ko, C.-H. Chung, J. H. Lee, Y.-H. Kim, C.-Y. Sohn, B.-C. Kim, C.-S. Hwang, Y.-H. Song, J. Lim, Y.-J. Ahn, G.-W. Kang, N. Lee, and C. Lee, “Efficient white organic light emission by single emitting layer,” Thin Solid Films 426, 246, 2003.
[17] N. K. Patel, S. Cinà, and J. H. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Select. Topics Quantum Electron. 8, 346, 2002.
[18] G. Gu, G. Parthasarathy, P. E. Burrows, P. Tian, I. G. Hill, A. Kahn, and S. R. Forrest, “Transparent stacked organic light emitting devices. I. Design principles and transparent compound electrodes,” J. Appl. Phys. 86, 4067, 1999.
[19] G. Gu, G. Parthasarathy, P. E. Burrows, P. Tian, I. G. Hill, A. Kahn, and S. R. Forrest, “Transparent stacked organic light emitting devices. II. Device performance and applications to displays,” J. Appl. Phys. 86, 4076, 1999.
[20] 吳忠幟,“Top-emitting OLED devices and displays”,「有機發光顯示器研究成果發表暨產學研座談」研討會論文集,國立成功大學,台南,2005年1月14日,第340頁。
[21] W. Rieß, T. A. Beierlein, and H. Rie, “Optimizing OLED structures for α-Si display applications via combinatorial methods and enhanced outcoupling,” Phys. Stat. Sol. (a) 201, 1360, 2004.
[22] C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507�{1, 2005.
[23] C. J. Lee, R. B. Pode, D. G. Moon, J. I. Han, N. H. Park, S. H. Baik, and S. S. Ju, “On the problem of microcavity effects on the top emitting OLED with semitransparent metal cathode,” Phys. Stat. Sol. (a) 201, 1022, 2004.
[24] T. N. Jackson, Y.-Y. Lin, D. J. Gundlach, and H. Klauk, “Organic thin-film transistors for organic light-emitting flat-panel display backplanes,” IEEE J. Select. Topics Quantum Electron. 4, 100, 1998.
[25] M. Satoh, “Organic radical battery and its technology,” NEC J. of Adv. Tech. 2, 262, 2005.
[26] P.-C. Kao, S.-Y. Chu, T.-Y. Chen, C.-Y. Zhan, F.-C. Hong, C.-Y. Chang, L.-C. Hsu, W.-C. Liao, and M.-H. Hon, “Fabrication of large-scaled organic light emitting devices on the flexible substrates using low-pressure imprinting lithography,” IEEE Trans. on Electron Devices 52, 1722, 2005.
[27] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE J. Select. Topics Quantum Electron. 10, 107, 2004.
[28] A. Köhler, J. S. Wilson, and R. H. Friend, “Fluorescence and phosphorescence in organic materials,” Adv. Eng. Mater. 4, 453, 2002.
[29] 胡紀平,“噴墨技術在可印式顯示器之應用”,「平面顯示器技術」研討會,國立彰化師範大學,彰化,2005年9月7日。
[30] 葉永輝,“主動式OLED顯示技術趨勢”,「平面顯示器技術」研討會,國立彰化師範大學,彰化,2005年9月8日。
[31] C. C. Wu, S. D. Theiss, G. Gu, M. H. Lu, J. C. Sturm, S. Wagner, and S. R. Forrest, “Integration of organic LED's and amorphous si TFT's onto flexible and lightweight metal foil substrates,” IEEE Electron Device Lett. 18, 609, 1997.
[32] 王鼎章,“全球OLED市場發展現況與趨勢”,「OLED市場及產業發展趨勢研討會」研討會,錸寶科技股份有限公司,新竹,2004年5月6日。
[33] W. Benzarti, F. Plais, A. D. Luca, and D. Pribat, “Compact analytical physical-based model of LTPS TFT for active matrix displays addressing circuits simulation and design,” IEEE Trans. on Electron Devices 51, 345, 2004.

第二章
[1] APSYS Version 2005.3 by Crosslight Software, Inc., Burnaby, Canada. (http://www.crosslight.com)
[2] B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 89, 4575, 2001.
[3] E. Tutiš, M. N. Bussac, B. Masenelli, M. Carrard, and L. Zuppiroli, “Numerical model for organic light-emitting diodes,” J. Appl. Phys. 89, 430, 2001.
[4] Y. Preezant and N. Tessler, “Self-consistent analysis of the contact phenomena in low-mobility semiconductors,” J. Appl. Phys. 93, 2059, 2003.
[5] C. R. Ou and W.-J. Yang, “Simulation and optimization of OLED device,” Proc. 9 th IDW, Hiroshima, Japan, 2002.
[6] T. Ogawa, D.-C. Cho, K. Kaneko, T. Mori, and T. Mizutani, “Numerical analysis of the carrier behavior of organic light-emitting diode: comparing a hopping conduction model with a SCLC model,” Thin Solid Films 438�{439, 171, 2003.
[7] I. Kamohara, M. Townsend, and B. Cottle, “Simulation of heterojunction organic thin film devices and exciton diffusion analysis in stacked-hetero device,” J. Appl. Phys. 97, 014501, 2005.
[8] P. S. Davids, I. H. Campbell, and D. L. Smith, “Device model for single carrier organic diodes,” J. Appl. Phys. 82, 6319, 1997.
[9] Y. Kawabe, M. M. Morrell, G. E. Jabbour, S. E. Shaheen, B. Kippelen, and N. Peyghambarian, “A numerical study of operational characteristics of organic light-emitting diodes,” J. Appl. Phys. 84, 5306, 1998.
[10] H. Houili, E. Tutiš, H. Lütjens, M. N. Bussac, and L. Zuppiroli, “MOLED: Simulation of multilayer organic light emitting diodes,” Computer Phys. Commun. 156, 108, 2003.
[11] W. Brutting, S. Berleb, and A. G. Mückl, “Device physics of organic light-emitting diodes based on molecular materials,” Organic Electron. 2, 1, 2001.
[12] D. Berner, H. Houili, W. Leo, and L. Zuppiroli. Walker, “Review: Insights into OLED functioning through coordinated experimental measurements and numerical model simulations,” Phys. Stat. Sol. (a) 202, 9, 2005.
[13] M. A. Webster, J. L. Auld, S. J. Martin, and A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300, 2004.
[14] G. G. Malliaras and J. C. Scott, “The roles of injection and mobility in organic light emitting diodes,” J. Appl. Phys. 83, 5399, 1998.
[15] B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723, 2003.
[16] J. Yang and J. Shen, “Effects of the hole barrier in bilayer organic light-emitting devices,” J. Phys. D: Appl. Phys. 33, 1768, 2000.
[17] A. B. Walker, A. Kambili, and S. J. Martin, “Electrical transport modelling in organic electroluminescent devices,” J. Phys.: Condens. Matter 14, 9825, 2002.
[18] I. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov, and J. P. Ferraris, “The Schottky energy barrier dependence of charge injection in organic light-emitting diodes,” Appl. Phys. Lett. 72, 1863, 1998.
[19] C.-C. Lee, M.-Y. Chang, Y.-D. Jong, T.-W. Huang, C.-S. Chu, and Y. Chang, “Numerical simulation of electrical and optical characteristics of multilayer organic light-emitting devices,” Jpn. J. Appl. Phys. 43, 7560, 2004.
[20] R. L. Martin, J. D. Kress, I. H. Campbell, and D. L. Smith, “Molecular and solid-state properties of tris-(8-hydroxyquinolate)- aluminum,” Phys. Rev. B 61, 15804, 2000.
[21] S. Barth, P. Müller, H. Riel, P. F. Seidler, W. Rieß, H. Vestweber, and H. Bassler, “Electron mobility in tris(8-hydroxy-quinoline)aluminum thin films determined via transient electroluminescence from single- and multilayer organic light-emitting diodes,” J. Appl. Phys. 89, 3711, 2001.
[22] I. H. Campbell, D. L. Smith, C. J. Neef, and J. P. Ferraris, “Consistent time-of-flight mobility measurements and polymer light-emitting diode current–voltage characteristics,” Appl. Phys. Lett. 74, 2809, 1999.
[23] A. G. Mückl, S. Berleb, W. Brütting, and M. Schwoerer, “Transient electroluminescence measurements on organic heterolayer light emitting diodes,” Synthetic Metals 111�{112, 91, 2000.
[24] S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Organic Electron. 3, 129, 2002.
[25] S. J. Martin, A. B. Walker, A. J. Campbell, and D. D. C. Bradley, “Electrical transport characteristics of single-layer organic devices from theory and experiment,” J. Appl. Phys. 98, 063709, 2005.
[26] J.-H. Lee, N. G. Park, Y. S. Kim, C.-H. Suh, J.-H. Shim, Y. K. Kim, “Steady-state analysis for contact barrier effects in metal/organic/metal structure using numerical bipolar transport simulation,” Current Appl. Phys. 5, 9, 2005.
[27] L. Yan, M. G. Mason, C. W. Tang, and Y. Gao, “Photoemission study of energy alignment at the metal/Alq3 interfaces,” Appl. Surface Sci. 175�{176, 412, 2001.
[28] H. Ishii, H. Oji, E. Ito, N. Hayashi, D. Yoshimura, and K. Seki, “Energy level alignment and band bending at model interfaces of organic electroluminescent devices,” J. Luminescence 87�{89, 61, 2000.
[29] E. Tutiš, M.-N. Bussac, and L. Zuppiroli, “Image force effects at contacts in organic light-emitting diodes,” Appl. Phys. Lett. 75, 3880, 1999.
[30] J. Chan, A. D. Rakić, Y. T. Yeow, and A. B. Djurišić, “Electrical and pptical simulation of tris (8-hydroxyquinoline) aluminium-based microcavity organic light emitting diode (MOLED),” Conference COMMAD, 53, 2004.
[31] M.-H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: Modeling and experiment,” J. Appl. Phys. 91, 595, 2002.
[32] S.-J. Lee, A. Badano, and J. Kanicki, “Monte carlo modeling of the light transport in polymer light-emitting devices on plastic substrates,” IEEE J. Sel. Top. Quantum Electron. 10, 37, 2004.
[33] M. Hoffmann and Z. G. Soos, “Optical absorption spectra of the Holstein molecular crystal for weak and intermediate electronic coupling,” Phys. Rev. B 66, 024305, 2002.
[34] C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Tech. LT�{4, 288, 1986.
[35] F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry–Perot micro-cavities based on Si3N4 waveguides,” Photonics and Nanostructures 4, 41, 2006.
[36] K. Imaizumi, K. Kaneko, T. Mori, and T. Mizutani, “Analysis of electoluminescence mechanisms in N,N’-disphenyl-N,N’- bis(3-methylphenyl)-1,1’-disphenyl-4,4’-diamine/hydroxyquinoline aluminum bilayer organic light-emitting diode by bipolar hopping conduction,” Jpn. J. Appl. Phys. 41, 366, 2002.
[37] J. Staudigel, M. Stößel, F. Steuber, and J. Simmerer, “A quantitative numerical model of multilayer vapor-deposited organic light emitting diodes,” J. Appl. Phys. 86, 3895, 1999.
[38] L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, “Device model for the operation of polymer/fullerene bulk heterojunction solar cells,” Phys. Rev. B 72, 085205, 2005.
[39] B. K. Crone, P. S. Davids, I. H. Campbell, and D. L. Smith, “Device model investigation of bilayer organic light emitting diodes,” J. Appl. Phys. 87, 1974, 2000.
[40] C. Pflumm, C. Karnutsch, M. Gerken, and U. Lemmer, “Parametric study of modal gain and threshold power density in electrically pumped single-layer organic optical amplifier and laser diode structures,” IEEE J. Quantum Electron. 41, 316, 2005.
[41] U. Ravaioli, “Advanced theory of semiconductors and semiconductor devices numerical methods and simulation: Review of conventional semiconductor device models based on partial differential equations,” http://www-ncce.ceg.uiuc.edu/tutorials/bte_dd/html/bte_dd.html, 1994. (2006年網路資料)
[42] M. S. Obrecht, M. I. Elmasry, and E. L. Heasell, “TRASIM: Compact and efficient two-dimensional transient simulator for arbitrary planar semiconductor devices,” IEEE Trans. on computer-aided design of integrated circuits and systems. 14, 447, 1995.
[43] C. M. Snowden, “Semiconductor device modelling,” Rep. Prog. Phys. 48, 223, 1985.
[44] M. Bahl, N. C. Panoiu, and R. M. Osgood, “Modeling ultrashort field dynamics in surface emitting lasers by using finite-difference time-domain method,” IEEE J. Quantum Electron. 41, 1244, 2005.
[45] S. K. Saha, Y. K. Su, and F. S. Juang, “Temperature dependence of electroluminescence in a tris-(8-Hydroxy) quinoline aluminum (Alq3) light emitting diode,” IEEE J. Quantum Electron. 37, 807, 2001.
[46] T. Dobbertin, E. Becker, T. Benstem, G. Ginev, D. Heithecker, H.-H. Johannes, D. Metzdorf, H. Neuner, R. Parashkov, and W. Kowalsky, “OLED matrix displays: In-line process technology and fundamentalss,” Thin Solid Films 442, 132, 2003.
[47] M. Stößel, J. Staudigel, F. Steuber, J. Simmerer, and A. Winnacker, “Impact of the cathode metal work function on the performance of vacuum-deposited organic light emitting-devices,” Appl. Phys. A 68, 387, 1999.
[48] P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, “Electron and hole transport in poly(p-phenylene vinylene) devices,” Appl. Phys. Lett. 68, 3308, 1996.
[49] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, “Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices,” J. Appl. Phys. 79, 7991, 1996.
[50] T. Mori, T. Ogawa, Do.-C. Cho, and T. Mizutani, “A discussion of conduction in organic light-emitting diodes,” Appl. Surface Sci. 212�{213, 458, 2003.

第三章
[1] S.-T. Lim, M. H. Chun, K. W. Lee, and D.-M. Shin, “Organic light emitting diodes with red emission using (2,6-dimethyl-4H-pyran-4'-ylidene) malononitrile moiety,” Opt. Mater. 21, 217, 2002.
[2] B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, “Simulating electronic and optical processes in multilayer organic light-emitting devices,” IEEE J. Sel. Top. Quantum Electron. 9, 723, 2003.
[3] M. Hoffmann and Z. G. Soos, “Optical absorption spectra of the Holstein molecular crystal for weak and intermediate electronic coupling,” Phys. Rev. B 66, 024305, 2002.
[4] L. Zugang and H. Nazare, “White organic light-emitting diodes emitting from both hole and electron transport layers,” Synthetic Metals 111�{112, 47, 2000.
[5] B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 89, 4575, 2001.
[6] S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Organic Electron. 3, 129, 2002.
[7] J. H. Lee, S. W. Kim, S. H. Ju, W. G. Lee, J. S. Choi, Y. K. Kim, and W. Y. Kim, “Emission shift by recombination effect in a three-layered oeld,” Synthetic Metals 111�{112, 63, 2000.
[8] Z. Liu, J. Pinto, J. Soares, and E. Pereira, “Efficient multilayer organic light emitting diode,” Synthetic Metals 122, 177, 2001.
[9] M. Stößel, J. Staudigel, F. Steuber, J. Simmerer, and A. Winnacker, “Impact of the cathode metal work function on the performance of vacuum-deposited organic light emitting-devices,” Appl. Phys. A 68, 387, 1999.
[10] M. Stößel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, A. Winnacker, H. Neuner, D. Metzdorf, H.-H. Johannes, and W. Kowalsky, “Electron injection and transport in 8-hydroxyquinoline aluminum,” Synthetic Metals 111�{112, 19, 2000.
[11] K. Ihm, T.-H. Kang, K.-J. Kim, C.-C. Hwang, Y.-J. Park, K.-B. Lee, B. Kim, C.-H. Jeon, C.-Y. Park, K. Kim, and Y.-H. Tak, “Band bending of LiF/Alq3 interface in organic light-emitting diodes,” Appl. Phys. Lett. 83, 2949, 2003.
[12] D. Grozea, A. Turak, X. D. Feng, Z. H. Lu, D. Johnson, and R. Wood, “Chemical structure of Al/LiF/Alq interfaces in organic light-emitting diodes,” Appl. Phys. Lett. 81, 3173, 2002.
[13] M. G. Mason, C. W. Tang, L.-S. Hung, P. Raychaudhuri, J. Madathil, D. J. Giesen, L. Yan, Q. T. Le, Y. Gao, S.-T. Lee, L. S. Liao, L. F. Cheng, W. R. Salaneck, D. A. dos Santos, and J. L. Bredas, “Interfacial chemistry of Alq3 and LiF with reactive metals,” J. Appl. Phys. 89, 2756, 2001.
[14] B. J. Chen, X. W. Sun, and K. S. Wong, “Enhanced performance of tris-(8-hydroxyquinoline) aluminum-based organic light-emitting devices with LiF/Mg:Ag/Ag cathode,” Opt. Express 13, 26, 2005.
[15] H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. von Seggern, and M. Stößel, “Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode,” J. Appl. Phys. 89, 420, 2001.
[16] B. J. Chen, X. W. Sun, and S. T. Tan, “Transparent organic light-emitting devices with LiF/Mg:Ag cathode,” Opt. Express 13, 937, 2005.
[17] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913, 1987.
[18] S. Y. Park, C. H. Lee, W. J. Song, and C. Seoul, “Enhanced electron injection in organic light-emitting devices using Al/LiF electrodes,” Current Appl. Phys. 1, 116, 2001.
[19] D. V. Khramtchenkov, H. Bassler, and V. I. Arkhipov, “A model of electroluminescence in organic double-layer light-emitting diodes,” J. Appl. Phys. 79, 9283, 1996.
[20] J. Chan, A. D. Rakić , C. YKwong, Z. T. Liu, A. B. Djurišić, M. L. Majewski, W. KChan, and P. C. Chui, “Device optimization of tris-aluminum (Alq3) based bilayer organic light emittingdiode structures,” Smart Mater. Struct. 15, S92, 2006.
[21] D.-S. Jeong, D. K. Hwang, and S. Im, “Advantages of energetic cluster evaporation for organic light emitting devices,” J. Vac. Sci. Technol. B 22, 539, 2004.
[22] Hyundai Electronics Industries Co., Ltd., Koera, “Side-by-side patterned RGB domain color device to optimize full color OLED,” http://www.hyundaiq.com/, 2004. (2005年網路資料)
[23] P. E. Burrows and S. R. Forrest, “Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices,” Appl. Phys. Lett. 64, 2285, 1994.
[24] J. Kido, M. Kohda, K. Okuyama, and K. Nagai, “Organic electroluminescent devices on molecularly doped polymers,” Appl. Phys. Lett. 61, 761, 1992.
[25] H. Antoniadis, J. N. Miller, D. B. Roitman, and I. H. Cambell, “Effects of hole carrier injection and transport in organic light-emitting diodes,” IEEE Trans. on Electron Devices 44, 1289, 1997.
[26] W. Rieß, T. A. Beierlein, and H. Rie, “Optimizing OLED structures for α-Si display applications via combinatorial methods and enhanced outcoupling,” Phys. Stat. Sol. (a) 201, 1360, 2004.
[27] J. Kalinowski, L. C. Palilis, W. H. Kim, and Z. H. Kafafi, “Determination of the width of the carrier recombination zone in organic light-emitting diodes,” J. Appl. Phys. 94, 7764, 2003.
[28] J. Shen and J. Yang, “Carrier transport in organic alloy light emitting diodes,” J. Appl. Phys. 87, 3891, 2000.
[29] Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminum/aromatic diamine and its application for an electroluminescent diode,” J. Phys.: Condens. Matter 5, 7979, 1993.
[30] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, “Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices,” J. Appl. Phys. 79, 7991, 1996.
[31] M. A. Webster, J. L. Auld, S. J. Martin, A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300, 2004.
[32] C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610, 1989.
[33] V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096, 1998.
[34] D. Berner, H. Houili, W. Leo, and L. Zuppiroli, “Insights into OLED functioning through coordinated experimental measurements and numerical model simulations,” Phys. Stat. Sol. (a) 202, 9, 2005.
[35] M. B. Khalifa, D. Vaufrey, and J. Tardy, “Opposing influence of hole blocking layer and a doped transport layer on the performance of heterostructure OLEDs,” Organic Electron. 5, 187, 2004.
[36] V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71, 2575, 1997.
[37] T. Mori, K. Obata, and T. Mizutani, “Electroluminescence of organic light emitting diodes with alternately deposited dye-doped aluminium quinoline and diamine derivative,” J. Phys. D: Appl. Phys. 32, 1198, 1999.
[38] A. A. Shoustikov, Y. You, and M. E. Thompson, “Electroluminescence color tuning by dye doping in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 4, 3, 1998.
[39] K. Read, H. S. Karlsson, M. M. Murnane, H. C. Kapteyn, and R. Haight, “Excitation dynamics of dye doped tris(8-hydroxy quinoline)aluminum films studied using time-resolved photoelectron spectroscopy,” J. Appl. Phys. 90, 294, 2001.
[40] K. Yamashita, J. Futenma, T. Mori, and T. Mizutani, “Effect of location and width of doping region on efficiency in doped organic light-emitting diodes,” Synthetic Metals 111�{112, 87, 2000.
[41] Z. H. Kafafi, H. Murata, L. C. Picciolo, H. Mattoussi, C. D. Merritt, Y. Iizumi, and J. Kido, “Electroluminescent properties of functional π-electron molecular systems,” Pure Appl. Chem. 71, 2085, 1999.
[42] B. Ruhstaller, J. C. Scott, P. J. Brock, U. Scherf, and S. A. Carter, “Bias-tuned reduction of self-absorption in polymer blend electroluminescence,” Chem. Phys. Lett. 317, 238, 2000.
[43] C. Qiu, H. Peng, H. Chen, Z. Xie, M. Wong, and H. S. Kwok, “Top-emitting OLED using praseodymium oxide coated platinum as hole injectors,” IEEE Trans. on Electron Devices 51, 1207, 2004.
[44] C. H. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Tech. LT�{4, 288, 1986.
[45] C.-L. Lin, H.-W. Lin, and C.-C. Wu, “Examining microcavity organic light-emitting devices having two metal mirrors,” Appl. Phys. Lett. 87, 021101, 2005.
[46] C.-J. Yang, C.-L. Lin, C.-C. Wu, Y.-H. Yeh, C.-C. Cheng, Y.-H. Kuo, and T.-H. Chen, “High-contrast top-emitting organic light-emitting devices for active-matrix displays,” Appl. Phys. Lett. 87, 143507, 2005.
[47] C.-L. Lin, T.-Y. Cho, C.-H. Chang, and C.-C. Wu, “Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode,” Appl. Phys. Lett. 88, 081114, 2006.
[48] C.-C. Wu, C.-L. Lin, P.-Y. Hsieh, and H.-H. Chiang, “Methodology for optimizing viewing characteristics of top-emitting organic light-emitting devices,” Appl. Phys. Lett. 84, 3966, 2004.
[49] F. Riboli, A. Recati, N. Daldosso, L. Pavesi, G. Pucker, A. Lui, S. Cabrini, and E. Di Fabrizio, “Photon recycling in Fabry–Perot micro-cavities based on Si3N4 waveguides,” Photonics and Nanostructures 4, 41, 2006.
[50] C. J. Lee, R. B. Pode, D. G. Moon, J. I. Han, N. H. Park, S. H. Baik, and S. S. Ju, “On the problem of microcavity effects on the top emitting OLED with semitransparent metal cathode,” Phys. Stat. Sol. (a) 201, 1022, 2004.
[51] F. Jean, J.-Y. Mulot, B. Geffroy, C. Denis, and P. Cambon, “Microcavity organic light-emitting diodes on silicon,” Appl. Phys. Lett. 81, 1717, 2002.

第四章
[1] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science 283, 1900, 1999.
[2] S. J. Martin, G. L. B. Verschoor, M. A. Webster, and A. B. Walker, “The internal electric field distribution in bilayer organic light emitting diodes,” Organic Electron. 3, 129, 2002.
[3] S. Jung, N. G. Park, M. Y. Kwak, B. O. Kim, K. H. Choi, Y. J. Cho, Y. K. Kim, and Y. S. Kim, “Surface treatment effects of indium–tin oxide in organic light-emitting diodes,” Opt. Mater. 21, 235, 2002.
[4] S. A. Van Slyke, C. H. Chen, and C. W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett. 69, 2160, 1996.
[5] Y. Hamada, T. Sano, K. Shibata, and K. Kuroki, “Influence of the emission site on the running durability of organic electroluminescent devices,” Jpn. J. Appl. Phys. 34, L824, 1995.
[6] Y. B. Yoon, H. W. Yang, D. C. Choo, T. W. Kim, and H. S. Oh, “Luminescence mechanisms of green and blue organic light-emitting devices utilizing hole-blocking layers,” Solid State Commun. 134, 367, 2005.
[7] Y.-F. Liew, F. Zhu, S.-J. Chua, and J.-X. Tang, “Tris-(8-hydroxyquinoline)aluminum-modified indium tin oxide for enhancing the efficiency and reliability of organic light-emitting devices,” Appl. Phys. Lett. 85, 4511, 2004.
[8] Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminum/aromatic diamine and its application for an electroluminescent diode,” J. Phys.: Condens. Matter 5, 7979, 1993.
[9] T. Mori, K. Obata, and T. Mizutani, “Electroluminescence of organic light emitting diodes with alternately deposited dye-doped aluminium quinoline and diamine derivative,” J. Phys. D: Appl. Phys. 32, 1198, 1999.
[10] Z. Y. Xie, J. S. Huang, C. N. Li, S. Y. Liu, Y. Wang, Y. Q. Li, and J. C. Shen, “White light emission induced by confinement in organic multiheterostructures,” Appl. Phys. Lett. 74, 4511, 1999.
[11] K. L. Tong, S. K. So, H. F. Ng, L. M. Leung, M. Y. Yeung, and C. F. Lo, “Transport and luminescence in naphthyl phenylamine model compounds,” Synthetic Metals 147, 199, 2004.
[12] M. A. Webster, J. L. Auld, S. J. Martin, and A. B. Walker, “Simulation of the external quantum efficiency for bilayer organic light emitting devices,” Proc. SPIE 5214, 300, 2004.
[13] B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, “Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes,” J. Appl. Phys. 89, 4575, 2001.
[14] P. E. Burrows and S. R. Forrest, “Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices,” Appl. Phys. Lett. 64, 2285, 1994.
[15] L. Zugang and H. Nazare, “White organic light-emitting diodes emitting from both hole and electron transport layers,” Synthetic Metals 111�{112, 4751, 2000.
[16] P. Cusumano, F. Buttitta, A. D. Cristofalo, and C. Cali, “Effect of driving method on the degradation of organic light emitting diodes,” Synthetic Metals 139, 657, 2003.
[17] H. Aziz, Z. Popovic, C. P. Tripp, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation processes at the cathode/organic interface in organic light emitting devices with Mg:Ag cathodes,” Appl. Phys. Lett. 72, 2642, 1998.
[18] E. M. Han, J. J. Yun, G. C. Oh, S. M. Park, N. K. Park, Y. S. Yoon, and M. Fujihira, “Enhanced stability of organic thin films for electroluminescence by photoirradiation,” Opt. Mater. 21, 243, 2002.
[19] Y. Xiaohui, H. Yulin, H. Yanbing, X. Zheng, and X. Xurong, “Effect of TPD films as electron blocking layer on EL spectrum,” Displays 21, 61, 2000.
[20] M. Pfeiffer, K. Leo, X. Zhou, J. S. Huang, M. Hofmann, A. Werner, and J. Blochwitz-Nimoth, “Doped organic semiconductors: Physics and application in light emitting diodes,” Organic Electron. 4, 89, 2003.
[21] Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Observation of spectral narrowing and emission energy shift in organic electroluminescent diode utilizing 8-hydroxyquinoline aluminum/aromatic diamine multilayer structure,” Appl. Phys. Lett. 63, 1871, 1993.
[22] C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610, 1989.
[23] J. Chan, A. W. Lu, A. M. C. Ng, A. B. Djurišić, and A. D. Rakić, “Organic quantum well light emitting diodes,” Proc. SPIE 6038, 360, 2006.
[24] R. S. Deshpande, V. Bulovic, and S. R. Forrest, “White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer,” Appl. Phys. Lett. 75, 888, 1999.
[25] J. Shen and J. Yang, “Carrier transport in organic alloy light emitting diodes,” J. Appl. Phys. 87, 3891, 2000.
[26] H. Murata, C. D. Merritt, and Z. H. Kafafi, “Emission mechanism in rubrene-doped molecular organic light-emitting diodes: direct carrier recombination at luminescent centers,” IEEE J. Sel. Top. Quantum Electron. 4, 119, 1998.
[27] J. Chan, A. W. Lu, C. H. Cheung, A. M. C. Ng, A. B. Djurišić, Y. T. Yeow, and A. D. Rakić, “Cavity design and optimization for organic microcavity OLEDs,” Proc. SPIE 6038, 464, 2006.
[28] Y. Qiu, Y. Gao, P. Wei, and L. Wang, “Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells,” Appl. Phys. Lett. 80, 2628, 2002.
[29] Y. Qiu, Y. Gao, L. Wang, P. Wei, L. Duan, D. Zhang, and G. Dong, “High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12- tetraphenylnaphthacene multiple quantum wells,” Appl. Phys. Lett. 81, 3540, 2002.
[30] H. An, B. Chen, J. Hou, J. Shen, and S. Liu, “Exciton confinement in organic multiple quantum well structures,” J. Phys. D: Appl. Phys. 31, 1144, 1998.
[31] F. F. So, S. R. Forrest, Y. Q. Shi, and W. H. Steier, “Quasi-epitaxial growth of organic multiple quantum well structures by organic molecular beam deposition,” Appl. Phys. Lett. 56, 674, 1990.
[32] Y. Shao and Y. Yang, “Naturally formed graded junction for organic light-emitting diodes,” Appl. Phys. Lett. 83, 2453, 2003.
[33] A. B. Chwang, R. C. Kwong, and J. J. Brown, “Graded mixed-layer organic light-emitting devices,” Appl. Phys. Lett. 80, 725, 2002.
[34] D. Ma, C. S. Lee, S. T. Lee, and L. S. Hung, “Improved efficiency by a graded emissive region in organic light-emitting diodes,” Appl. Phys. Lett. 80, 3641, 2002.
[35] T. Mori, H. Tsuge, and T. Mizutani, “Enhancement of electroluminescence efficiency for organic light-emitting-diodes due to the introduction of a co-evaporated layer,” J. Phys. D: Appl. Phys. 32, L65, 1999.
[36] G. Vamvounis, H. Aziz, N.-X. Hu, and Z. D. Popovic, “Temperature dependence of operational stability of organic light emitting diodes based on mixed emitter layers,” Synthetic Metals 143, 69, 2004.
[37] Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, and K. Yoshino, “Fabrication and characteristics of 8-hydroxyquinoline aluminum/aromatic diamine organic multiple quantum well and its use for electroluminescent diode,” Appl. Phys. Lett. 62, 3250, 1993.
[38] C.-Y. Yang, Y.-S. Tsai, F.-S. Juang, Y.-K. Su, D. Lin, C.-H. Chu, and Y.-T. Chiu, “Separately doped structures for red organic light-emitting diodes,” Jpn. J. Appl. Phys. 44, 2833, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王雯君 2005〈客家邊界:客家意象的詮釋與重建〉,《東吳社會學報》18:117-156。台北:東吳大學。
2. 王雯君 2005〈客家邊界:客家意象的詮釋與重建〉,《東吳社會學報》18:117-156。台北:東吳大學。
3. 王甫昌 1993b〈族群通婚的後果:省籍通婚對於族群同化的影響〉,《人文及社會科學集刊》6(1):231-267。
4. 王甫昌 1993b〈族群通婚的後果:省籍通婚對於族群同化的影響〉,《人文及社會科學集刊》6(1):231-267。
5. 王甫昌 1993a〈光復後台灣漢人族群通婚的原因與形式初探〉,《中央研究院民族學研究所集刊》76: 43-96。
6. 王甫昌 1993a〈光復後台灣漢人族群通婚的原因與形式初探〉,《中央研究院民族學研究所集刊》76: 43-96。
7. 王雯君、張維安 2004〈客家文化與產業創意:2004年客家桐花祭之分析〉,《社會文化學報》18:121-146。桃園:國立中央大學通識教育中心。
8. 王雯君、張維安 2004〈客家文化與產業創意:2004年客家桐花祭之分析〉,《社會文化學報》18:121-146。桃園:國立中央大學通識教育中心。
9. 張維安、王雯君 2005〈客家意象:解構「嫁夫莫嫁客家郎」〉,《思與言》43(1)。台北:思與言雜誌社。
10. 張維安、王雯君 2005〈客家意象:解構「嫁夫莫嫁客家郎」〉,《思與言》43(1)。台北:思與言雜誌社。
11. 蔣炳釗 1995〈試論客家的形成及其與畬族的關係〉,頁271-301,莊英章、潘英海編《台灣與福建社會文化研究論文集》。台北南港:中研院民族所。
12. 蔣炳釗 1995〈試論客家的形成及其與畬族的關係〉,頁271-301,莊英章、潘英海編《台灣與福建社會文化研究論文集》。台北南港:中研院民族所。
13. 蕭阿勤 1997〈集體記憶理論的檢討:解剖者、拯救者,與一種民主觀點〉,《思與言》35(1):247-296。
14. 蕭阿勤 1997〈集體記憶理論的檢討:解剖者、拯救者,與一種民主觀點〉,《思與言》35(1):247-296。