跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 17:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林智祥
研究生(外文):Chih-Hsiang Lin
論文名稱:在MANET環境上建構MobileNetworks
論文名稱(外文):Construct Mobile Networks in MANET
指導教授:李龍盛李龍盛引用關係
指導教授(外文):Long-Sheng Li
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:94
語文別:中文
論文頁數:114
中文關鍵詞:行動隨意無線網路行動式IPv6移動式網路叢集全IP網路
外文關鍵詞:MANETMobile IPv6Network MobilityClusteringAll IP Network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
由於行動隨意無線網路 (Mobile Ad Hoc Network,MANET)是一種不需要網路基礎建設的無線網路環境,因此各個Node之間必須透過Routing Protocol互相通訊,但大多Routing Protocols都不考慮位址配置的問題。然而在Network Mobility (NEMO)環境中,其中的Nodes皆能透過Bi-directional Tunneling的機制存取Internet,並且提供一套位址配置機制。因此本文提出在MANET環境中建構NEMO架構,使之成為All IP Network,並且透過IP技術來完成Routing。我們基於MANET中的Clustering技術,進而提出兩類演算法來完成NEMO架構,分散式與集中式。針對所有Nodes可隨時移動的特性,本文透過局部收集的資訊來維護MANET網路拓樸。在模擬結果方面顯示,在本文提出的建構方式中,雖然Highest Connectivity Scheme無法選出最少的MR,但是各個Nodes負擔也不會是最高的。並且經過定期的維護後,可以構成較穩定的環境,使得換手次數下降與封包傳送成功率上升。
MANET is a wireless network without infrastructure. All nodes must communication with each other by a routing protocol. Most of routing protocols don’t consider allocating address to nodes. However, in NEMO, all nodes can’t only communicate with Internet using Bi-directional Tunneling but also can be allocated an address. Therefore we propose to construct mobile networks in MANET to let MANET be All IP Network. So we propose two kinds of algorithms – distributed and centralized schemes. Because all nodes in MANET move arbitrarily, the network topologies can be maintained by gathering the local information. Finally, the simulation shows that Highest Connectivity Scheme is moderate. The overhead of the scheme is low.
目錄

摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xiii
Chapter 1 Introduction 1
1.1 MANET架構 1
1.2 Network Mobility架構 2
1.3 Motivation 4
1.4 Thesis Organization 4
Chapter 2 Related Work 6
2.1 Clustering in MANET 6
2.1.1 Lowest-ID Clustering 7
2.1.2 Highest Connectivity Clustering 8
2.1.3 Node-Weight Clustering 9
2.2 MONET 9
2.2.1 Mobile IPv6 10
2.2.2 NEMO 14
2.3 相關文獻 20
2.3.1 位址配置 20
2.3.2 Researches of NEMO Router Optimization 22
Chapter 3 Constructing Schemes 24
3.1 Tables and Messages 28
3.2 Establishment of the MONET architecture 31
3.2.1 Distributed Scheme 31
3.2.2 Centralized Scheme 37
3.3 Maintenance of the MONET architecture 48
3.3.1 New Link 49
3.3.2 Link Failure 55
3.3.3 The Retired Mechanism of the Mobile Routers 57
3.4 位址配置方式 58
Chapter 4 Simulations and Analysis 60
4.1 The Algorithms of Simulation Model 61
4.2 The Parameters of the Simulation Environment 62
4.3 The Experimental Results and Discussions 68
4.3.1 The Depth of MONET 68
4.3.2 The Number of Mobile Router 70
4.3.3 The Number of Mobile Router Change 78
4.3.4 The Storage Overhead 81
4.3.5 The Delivery Ratio 83
4.3.6 The Number of Average Hops 88
4.3.7 The End-to-End Delay 91
4.3.8 Summary 94
Chapter 5 Conclusions and Future Works 95
References 98

圖目錄

Figure 1.1:NEMO架構 3
Figure 2.1:Clustering 7
Figure 2.2:Home Agent Registration in Mobile IPv6 12
Figure 2.3:Route Optimization in Mobile IPv6 14
Figure 2.4:Movement of Mobile Network 17
Figure 2.5:Movement of Mobile Network Node 18
Figure 2.6:Nested Mobile Network 20
Figure 3.1:Clustering that we proposed 24
Figure 3.2:An example of MANET 26
Figure 3.3:An example of constructing mobile networks in MANET 27
Figure 3.4:The Routing Problem of NEMO architecture 27
Figure 3.5:The flow chart of the Distributed Scheme 33
Figure 3.6:Initialization of MANET 35
Figure 3.7:Complete Updating Level of Nodes 35
Figure 3.8:Distributed Scheme (For example) 36
Figure 3.9:Distributed Scheme 36
Figure 3.10:The flow chart of the Centralized Scheme 39
Figure 3.11:Centralized Scheme (Step 1) 40
Figure 3.12:Centralized Scheme (Step 2) 41
Figure 3.13:Centralized Scheme (Step 3) 41
Figure 3.14:Centralized Scheme (Step 4) 42
Figure 3.15:Centralized Scheme (Step 5) 42
Figure 3.16:Neighbor Covering Situation 43
Figure 3.17:The flow chart of the CH Centralized Control Scheme 44
Figure 3.18:The variation of Neighbor List Table 47
Figure 3.19:CH Centralized Control Scheme (Step 1) 47
Figure 3.20:CH Centralized Control Scheme (Finally) 48
Figure 3.21:MNN Changes its Link (Situation 1) 49
Figure 3.22:MNN Changes its Link (Situation 2) 50
Figure 3.23:Before MR Change its Link 51
Figure 3.24:After MR Change its Link 52
Figure 3.25:Link Create (Situation 1) 53
Figure 3.26:Link Create (Situation 2) 54
Figure 3.27:MNN Changes its Link (Situation 3) 55
Figure 3.28:MNN Fails its Link 56
Figure 3.29:MR Fails its Link 56
Figure 3.30:An example of the Retired Situation 58
Figure 4.1:The flow chart of the Simulation 61
Figure 4.2:The Effects of the Number of Simulations 63
Figure 4.3:The Conference Interval Change for the Number of Simulations 64
Figure 4.4:The Effects of the Simulation Time 65
Figure 4.5:The Conference Interval Change for the Simulation Time 66
Figure 4.6:The Isolated Nodes for the Transmission Range of Nodes (The number of nodes = 100, average speed = 0) 67
Figure 4.7:The Depth of MONET for the Number of Nodes (Transmission range = 120, speed = 0) 69
Figure 4.8:The Depth of MONET for the Transmission Range of Nodes (The number of nodes = 100, speed = 0) 69
Figure 4.9:The Number of Mobile Router for the Number of Nodes (Speed = 0, transmission range = 120) 72
Figure 4.10:The Number of Mobile Router for the Transmission Range of Nodes (Speed = 0, the number of nodes = 100) 73
Figure 4.11:The Number of Mobile Router for Retire Algorithm (The number of nodes = 100, transmission range = 120, average speed = 10) 74
Figure 4.12:The Number of Mobile Router for the Number of Nodes (Average speed=10, transmission range=120) 76
Figure 4.13:The Number of Mobile Router for Average Speed (The number of nodes=100, transmission range=120) 76
Figure 4.14:The Number of Mobile Router for the Transmission Range (The number of nodes=100, average speed=10) 77
Figure 4.15:The Number of Mobile Router Change for the Number of Nodes (Average speed = 10, transmission range = 120) 79
Figure 4.16:The Number of Mobile Router Change for the Average Speed of Nodes (The number of nodes = 100, transmission range = 120) 80
Figure 4.17:The Number of Mobile Router Change for the Transmission Range of Nodes (The number of nodes = 100, average speed = 10) 80
Figure 4.18:The Storage Overhead for the Number of Nodes (Transmission range = 120, average speed = 10) 82
Figure 4.19:The Storage Overhead for the Transmission Range of Nodes (The number of nodes = 100, average speed = 10) 83
Figure 4.20:The Delivery Ratio for the Number of Nodes (Average speed = 10, transmission range = 120) 85
Figure 4.21:The Delivery Ratio for the Average Speed of Nodes (The number of nodes = 100, transmission range = 120) 86
Figure 4.22:The Delivery Ratio for the Transmission Range of Nodes (The number of nodes = 100, average speed = 10) 87
Figure 4.23:The Delivery Ratio for the Interval (Average speed = 10, transmission range = 120) 88
Figure 4.24:The Number of Average Hops for the Number of Nodes (Average speed = 10, transmission range = 120) 89
Figure 4.25:The Number of Average Hops for the Average Speed of Nodes (The number of nodes = 100, transmission range = 120) 90
Figure 4.26:The Number of Average Hops for the Transmission Range of Nodes (The number of nodes = 100, average speed = 10) 91
Figure 4.27:The End-to-End Delay for the Number of Nodes (Average speed = 10, transmission range = 120) 92
Figure 4.28:The End-to-End Delay for the Average Speed of Nodes (The number of nodes = 100, transmission range = 120) 93
Figure 4.29:The End-to-End Delay for the Transmission Range of Nodes (The number of nodes = 100, average speed = 10) 93

表目錄

Table 3 1:Neighbor Table 29
Table 3 2:The format of Hello Message 30
Table 3 3:The format of Router Advertisement Message 30
Table 3 4:Option Formats 31
Table 3 5:Options Format that we proposed 31
Table 3 6:The Candidate Neighbor Table 34
Table 3 7:The format of the Neighbor List Message 44
Table 4 1:The Simulation Parameters 62
Table 4 2:The comparison of overhead 94
[1] C.-E. Perkins, “Ad Hoc Networking,” Addison-Wesley, Dec. 2000.
[2] C.-J. Stone, “A Course in Probability and Statistics,” Wadsworth Publishing Company, 1996.
[3] C.-K. Toh, “Ad Hoc Mobile Wireless Networks:Protocols and Systems,” Prentice Hall PTR, 2002.
[4] S. Basagni, “Distributed clustering for ad hoc networks,” in Proceedings of the 1999 International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’99), IEEE Computer Society, pp. 310-315, Australia, Jun.,1999.
[5] A. Conta, “Extensions to IPv6 Neighbor Discovery for Inverse Discovery Specification,” Network Working Group, RFC 3122, Jun. 2001.
[6] L.-A. DaSilva, S.-F. Midkiff, J.-S. Park, G.-C. Hadjichristofi, N.-J. Davis, K.-S. Phanse, and Tao Lin, “Network Mobility and Protocol Interoperability in Ad Hoc Networks,” Communications Magazine, IEEE, Vol. 42, pp. 88-96, Nov. 2004.
[7] V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert, “Network Mobility (NEMO) Basic Support Protocol,” Network Mobility Working Group, RFC 3963, Jan. 2005.
[8] T. Ernst, “Network Mobility Support Goals and Requirements,” Internet Draft draft-ietf-nemo-requirements-04.txt, Feb. 2005.
[9] T. Ernst and H-Y. Lach, “Network Mobility Support Terminology,” Internet Draft draft-ietf-nemo-terminology-03.txt, Feb. 2005.
[10] T. Ernst, A. Olivereau, L. Bellier, C. Castelluccia and L. Hong-Yon, “Mobile Networks Support in Mobile IPv6 (Prefix Scope Binding Updates),” Internet Draft draft-ernst-mobileip-v6-network-03.txt, Mar. 2002.
[11] H. Esaki, “Multi-homing and Multi-path architecture using mobile IP and NEMO framework,” in Proceedings of 2004 IEEE International Symposium on Applications and the Internet (SAINT’2004), pp. 6, Jan. 2004.
[12] M. Gerla and J. Tsai, “Multicluster, mobile, multimedia radio network,” ACM/Baltzer Journal of Wireless Networks, Vol. 1, pp. 225-238, 1995.
[13] L. Hong-Yon, C. Janneteau, A. Petrescu, “Network Mobility in beyond-3G systems,” Communications Magazine, IEEE, Vol. 41, pp. 52-57, Jul. 2003.
[14] C. Hosik, P. Eun Kyoung, and C. Yanghee, “R-BU : Recursive Binding Update for Route Optimization in Nested Mobile Networks,” in Proceedings of 2003 IEEE International Conference on Vehicular Technology Conference (VTC’2003), Vol. 3, pp.2063 – 2067, Oct. 2003.
[15] T.-C. Hou and T.-J. Tsai, “Adaptive clustering in a hierarchical ad hoc network,” ICS Proceedings of the Workshop on Computer Networks, Internet, and Multimedia, Dec. ,1998.
[16] R.-H. JAN and Y.-L. Lin, “A Hybrid Routing Method for Multi-Hop Wireless Local Area Networks,” IEICE Transactions on Communication, Vol. E87-B, No. 10, pp. 2939-2945, Oct. 2004.
[17] D. Johnson, C. Perkins, and J. Arkko, “Mobility Support in IPv6,” Network Working Group, RFC3775, Jun. 2004.
[18] N. Jongkeun, C. Jaehyuk, C. Seongho, K. Chongkwon, L. Sungjin, K. Hyunjeong, and K. Changhoi, “A Unified Route Optimization Scheme for Network Mobility,” in Proceedings of IFIP TC6 9th International Conference on Personal Wireless Communications (PWC’2004), pp.29-38, Sep. 2004.
[19] L. KyeongJin, P. Jungsoo, and K. Hyoungjun, “Route Optimization for Mobile Nodes in Mobile Network based on prefix delegation,” in Proceedings of 2003 IEEE Conference on Vehicular Technology Conference (VTC’2003), Vol. 3, pp. 2035-2038, Oct. 2003.
[20] P. Lamsal, “Network Mobility,” Research Seminar on Hot Topics in Internet Protocols, May 2004.
[21] J. Manner, Ed. and M. Kojo, Ed., “Mobility Related Terminology,” Network Working Group, RFC3753, Jun. 2004.
[22] N. Montavont, T. Ernst, and T. Noel, “Multihoming in Nested Mobile Networking,” in Proceedings of 2004 IEEE International Symposium on Applications and the Internet (SAINT’2004), pp. 184-189, Jan. 2004.
[23] T. Narten, E. Nordmark and W. Simpson, “Neighbor Discovery for IP Version 6 (IPv6),” Network Working Group, RFC 2461, Dec. 1998.
[24] P. Pääkkönen, M. Rantonen, and J. Latvakoski, “Integration of Network Mobility (NEMO) and Ad Hoc Networking (MANET) approaches in a heterogeneous environment,” The third annul Mediterranean Ad hoc Networking Workshop (Med-hoc-net 2004), Bodrun, Turkey, Jun. 2004.
[25] C.-E. Perkins, J.-T. Malinen, R. Wakikawa, E.-M. Belding-Royer, and Y. Sun, “IP Address Autoconfiguration for Ad Hoc Networks,” Nokia, Internet Draft draft-ietf-manet-autoconf-0
1.txt, Nov. 2001.
[26] W. Ryuji, K. Susumu, U. Keisuke, and M. Jun, “ORC: Optimized Route Cache Management Protocol for Network Mobility,” in Proceedings of 2003 IEEE International Conference on Telecommunication (ICT’2003), Vol. 2, pp. 1194-1200 Feb. 2003.
[27] Yasushi Takagi, Hiroyuki Ohnishi, Keisuke Sakitani, Ken-ichi Baba and Shinji Shimojo, “Route Optimization Methods for Network Mobility with Mobile IPv6,” IEICE Transactions on Communications, Vol. 87, pp. 480-489, Mar. 2004.
[28] P. Thubert and M. Molteni, “IPv6 Reverse Routing Header and its application to Mobile Networks,” Internet Draft draft-thubert-nemo-reverse-routing-header-05.txt
[29] M. Watari, R. Wakikawa, T. Ernst and J. Murai, “Optimal Path Establistment for Nested Mobile Networks,” in Proceedings of 2005 IEEE International Conference on Vehicular Technology Conference (VTC’2005), Vol. 4, pp. 2302-2306, Sep. 2005.
[30] K. Weniger and M. Zitterbart, “IPv6 Autoconfiguration in Large Scale Mobile Ad-Hoc Networks,” in Proceedings of European Wireless 2002, Florence, Italy, Feb. 2002.
[31] Network Mobility, http://www.mobilenetworks.org/nemo/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊