跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/22 00:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯佳惠
研究生(外文):Jia-Huei Ke
論文名稱:氧和二氧化碳處理對有機栽培之小白菜及小黃瓜品質及硝酸鹽含量之影響
論文名稱(外文):Effect of CO2 and O2 Treatments on the Quanlity and Nitrate Content of Organic Pai-choi (Brassica campestris L.) and Cucumber (Cucumis sativus L.)
指導教授:蔡智賢蔡智賢引用關係李堂察
指導教授(外文):Jyh-Shyan TsayTan-Cha Lee
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:園藝學系研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:54
中文關鍵詞:二氧化碳品質硝酸鹽
外文關鍵詞:O2CO2quanlitynitrate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:834
  • 評分評分:
  • 下載下載:149
  • 收藏至我的研究室書目清單書目收藏:0
摘要
  本研究探討有機栽培之小白菜及小黃瓜,以塑膠袋包裝並灌注CO2、O2,密封貯藏於5℃下,對品質變化及硝酸鹽含量之影響。有機小白菜經O2處理貯藏1天後,葉身與葉柄之硝酸鹽含量顯著減少約25%,其含量分別為914 mg•kg DW-1與3536 mg•kg DW-1;CO2處理組之小白菜,貯藏第1天其葉柄硝酸鹽含量略為增加,於貯藏第3天後,亦可明顯降低其葉身與葉柄硝酸鹽含量約14%,其含量分別為953 mg•kg DW-1與4143 mg•kg DW-1。貯藏第7天後,以CO2處理組之葉身硝酸鹽含量為最低 (953 mg•kg DW-1),而O2處理組與對照組之葉身硝酸鹽含量分別為1323及1552 mg•kg DW-1。有機栽培之小黃瓜,氣體貯藏第1天,以CO2處理組之硝酸鹽含量略高於其它處理組,貯藏第3天,經CO2與O2處理貯藏分別可降低硝酸鹽含量約53%及25%。於貯藏第7天,以O2處理組硝酸鹽含量93 mg•kg DW-1為最低,CO2處理組102.2 mg•kg DW-1次之,對照組111 mg•kg DW-1為最高。貯藏期間,以CO2處理,有利於維持小白菜及小黃瓜維它命C含量,而以O2處理其維它命C含量較低。利用O2或CO2處理短期貯藏1~3天,可降低小白菜及小黃瓜硝酸鹽含量,其失重率、乾重率、可溶性蛋白質及碳水化合物含量,與對照組無顯著差異。
Summary
  Effects of postharvest O2 and CO2 treatments on the quality and nitrate contents of two organic vegetables, Pak-choi (Brassica campestris L.) and cucumber (Cucumis sativus L.), in 5℃ storage were investigated. After organic Pak-choi was treated with O2 and stored for 1 day, the nitrate content in the leaf blades and petioles decreased about 25%, to 914 mg•kg DW-1 and 3536 mg•kg DW-1 respectively. The Pak-choi in the CO2 treatment showed slight increased in the nitrate content in the petioles on the first day of storage, and after 3 days of storage the nitrate content in the leaf blades and petioles decreased 14% to 953 mg•kg DW-1 and 4143 mg•kg DW-1. After 7 days of storage, the Pak-choi in the CO2 treatments showed the lowest nitrate content in the leaf blades (953 mg•kg DW-1), and the nitrate contents in the O2 treatment and air treatment (as control) were 1323 and 1552 mg•kg DW-1 respectively. Organic cucumber was after 1 day of storage, the nitrate content in the CO2 treatment was highest than others, and after 3 days of storage the nitrate content in the CO2 and O2 treatments decreased about 53% and 25% respectively. After 7 days of storage, the cucumber in the O2 treatment had the lowest content of nitrate (93 mg•kg DW-1), followed by CO2 treatment (102.2 mg•kg DW-1), and then air treatment (111 mg•kg DW-1). Pak-choi and cucumber would maintain ascorbic acid content by CO2 treatment under storage, and it was lower by O2 treatment. In conclusion of this study, we suggest that short storage for 1~3 days by O2 or CO2 treatments can decrease the nitrate content in Pak-choi and cucumber, which the weight loss percentage, dry weight percentage, soluble protein, and carbohydrate contents were not significantly different with air treatment.
目錄
壹、前言 (Introduction) 1
貳、材料與方法 (Material and methods) 5
一、試驗材料 (Plant material) 5
二、試驗方法 (Methods) 5
參、結果與討論 (Results and Discussion) 11
一、有機栽培之小白菜及小黃瓜經氣體貯藏後對外觀品質、失重率及乾重率之影響 11
二、有機栽培之小白菜及小黃瓜經氣體貯藏後對可溶性蛋白質含量之影響 13
三、有機栽培之小白菜及小黃瓜經氣體貯藏後對維他命C含量之影響 16
四、有機栽培之小白菜及小黃瓜經氣體貯藏後對硝酸鹽含量之影響 18
五、有機栽培之小白菜及小黃瓜經氣體貯藏後對碳水化合物含量之影響 24
肆、參考文獻 31

圖目錄
圖1. 採收當天,有機栽培之小白菜 (A) 與小黃瓜 (B) 之外觀 38
圖2. CO2與O2處理於貯藏第1天對有機栽培之小白菜與小黃瓜之外觀變化 39
圖3. CO2與O2處理於貯藏第3天對有機栽培之小白菜與小黃瓜之外觀變化 40
圖4. CO2與O2處理於貯藏第5天對有機栽培之小白菜與小黃瓜之外觀變化 41
圖5. CO2與O2處理於貯藏第7天對有機栽培之小白菜與小黃瓜之外觀變化 42
圖6. CO2與O2處理對貯藏於5℃下有機栽培之小白菜失重率之影響 43
圖7. CO2與O2處理對貯藏於5℃下有機栽培之小白菜乾重率之影響 43
圖8. CO2與O2處理對貯藏於5℃下有機栽培之小黃瓜失重率之影響 44
圖9. CO2與O2處理對貯藏於5℃下有機栽培之小黃瓜乾重率之影響 44
圖10. CO2與O2處理對貯藏於5℃下有機栽培之小白菜可溶性蛋白質含量之影響 45
圖11.CO2與O2處理對貯藏於5℃下有機栽培之小黃瓜可溶性蛋白質含量之影響 45
圖12. CO2與O2處理對貯藏於5℃下有機栽培之小白菜維他命C含量之影響 46
圖13. CO2與O2處理對貯藏於5℃下有機栽培之小黃瓜維他命C含量之影響 46
圖14. CO2與O2處理對貯藏於5℃下有機栽培之小白菜葉身硝酸鹽含量之影響 47
圖15. CO2與O2處理對貯藏於5℃下有機栽培之小白菜葉柄硝酸鹽含量之影響 47
圖16. CO2與O2處理對貯藏於5℃下有機栽培之小黃瓜硝酸鹽含量之影響 48
圖17. CO2與O2處理對貯藏於5℃下有機栽培之小白菜葉身可溶性醣含量之影響 48
圖18. CO2與O2處理對貯藏於5℃下有機栽培之小白菜葉柄可溶性醣含量之影響 49
圖19. CO2與O2處理對貯藏於5℃下有機栽培之小黃瓜可溶性醣含量之影響 49
圖20. CO2與O2處理對貯藏於5℃下有機栽培之小白菜葉身蔗糖含量之影響 50
圖21. CO2與O2處理對貯藏於5℃下有機栽培之小白菜葉柄蔗糖含量之影響 50
圖22. CO2與O2處理對貯藏於5℃下有機栽培之小黃瓜蔗糖含量之影響 51
圖23. CO2與O2處理對貯藏於5℃下有機栽培之小白菜葉身葡萄糖含量之影響 51
圖24. CO2與O2處理對貯藏於5℃下有機栽培之小白菜葉柄葡萄糖含量之影響 52
圖25. CO2與O2處理對貯藏於5℃下有機栽培之小黃瓜葡萄糖含量之影響 52
圖26. CO2與O2處理對貯藏於5℃下有機栽培之小白菜葉身澱粉含量之影響 53
圖27. CO2與O2處理對貯藏於5℃下有機栽培之小白菜葉柄澱粉含量之影響 53
圖28. CO2與O2處理對貯藏於5℃下有機栽培之小黃瓜澱粉含量之影響 54
肆、參考文獻
1. 王健一、王自存. 1988. 大氣成分對園產品生理與生化之影響. 中國園藝 34(4):220-248.
2. 吳正宗、王銀波. 1995. 一些影響小白菜 (Brassica chinensis L.) 硝酸態氮含量的環境因子. 中國農業化學會誌 33(2):125-133.
3. 吳正宗. 2000. 蔬菜的硝酸鹽問題. 有機栽培作物硝酸態氮含量研討會 p.39-46. 中興大學土壤環境科學系.
4. 柯勇編著. 2002. 植物生理學. 藝軒圖書出版社. p.312-318.
5. 倪禮豐、鍾仁賜. 1997. 採收時間及遮蔭對芥藍菜 (Brassica oleracea L.) 氮組成及硝酸還原酵素活性的影響. 花蓮區農業改良場研究彙報 14:61-77.
6. 翁仁憲. 1999. 日射量及溫度對水耕芥藍菜硝酸態氮含量之影響.中華農業氣象 6(2):97-104.
7. 崔玉亭. 1999. 化肥與生態環境保護. 化學業出版社. p.127-136.
8. 張簡秀容、馮永富. 1995. 有機肥料對不同葉菜類硝酸鹽含量之影響. 桃園區農業改良場研究報告 21:7-18.
9. 郭孚燿. 1998. 遮蔭及氮肥對芥藍菜硝酸鹽累積之影響. 臺中區農業改良場研究彙報 58: 59-66.
10. 鄔家琪、張喜寧. 2001. 硝酸離子含量對蔬菜品質的影響. 科學農業 49(1,2):1-6.
11. 蔡素蕙、楊秋忠、黃山內. 1989. 小白菜及芥藍菜不同部位氮素累積量及遮蔭與烹調之影響. 中華農學會報146: 34-41.
12. 蔡素蕙、楊秋忠、黃山內. 1992. 有機及化學肥料對小白菜生長、硝態氮及維生素含量之影響. 中華農農學會報 158: 77-85.
13. 鄭文瑛. 1997. 新鮮蔬果內硝酸離子和維他命C的含量、分布及貯藏期間的變化. 台灣大學園藝學系碩士論文 p.21-56.
14. Able, A. J., L. S. Wong, A. Prasad, and T. J. O’Hare. 2005. The physiology of senescence in detached pak choy leaves (Brassica rapa var. chinensis) during storage at different temperatures. Postharvest Biol. Technol. 35:271-278.
15. Agar, I. T., J. Streif, and F. Bangerth. 1997. Effect of high CO2 and controlled atmosphere (CA) on the ascorbic and dehydroascorbic acid content of some berry fruits. Postharvest Biol. Technol. 11:47-55.
16. Albrecht, J. A. 1993. Ascorbic acid content and retention in Lettuce. J. Food Qual. 16:311-316.
17. Aworh, O. C., J. R. Hicks, P. L. Minotti, and C. Y. Lee. 1980. Effect of plant age and nitrogen fertilization on nitrate accumulation and postharvest nitrate accumulation in fresh spinach. J. Am. Soc. Hortic. Sci. 105(1):18-20.
18. Baker, E. M., D. C. Hammer, J. E. Kenndedy, and B. M. Tolbert. 1973. Interference by ascorbate-2-sulfate in the dintrophenylhydrazine assay of Ascorbic acid. Anal. Biochem. 55:641-642.
19. Barth, M. M., and H. Zhuang. 1996. Packaging design affects antioxidant vitamin retention and quality of broccoli florets during postharvest storage. Postharvest Biol. Technol. 9:141-150.
20. Barth, M. M., E. L. Kerbel, A. K. Perry, and S. J. Schmidt. 1993. Mondified atmosphere packaging affects ascorbic acid, enzyme acitivity and market quality of broccoli. J. Food Sci. 58(1):140-143.
21. Blom-Zandstra, M., and J. E. M. Lampe. 1985. The role of nitrate in the osmoregulation of Lettuce (Lactuca sativa L.) grown at different light intensities. J. Exp. Bot. 36: 1043-1052.
22. Bohling, H., and H. Hansen. 1977. Storage of white cabbage (Brassica oleracea var. capitata) in controlled atmospheres. Acta Hortic. 62:49-54.
23. Bradford, M. M. 1976. A rapid and sensitivve method for the quantitation microgram quantities of protein utilizing the principle of protein dye binding . Anal. Biochem. 72:248-254.
24. Bumber, A. A., I. V. Kornienko, I. A. Profatilova, V. V. Vnukov, I. E. Kornienko, and A. D. Garnovskii. 2001. Polarographic study of the antioxidant activity of amino acid and proteins. Russian J. General Chem. 71(8):1311-1313.
25. Chen, B. M., Z. H. Wang, S. X. Li, G. X. Wang, H. X. Song, and X. N. Wang. 2004. Effects of nitrate supply on plant growth, nitrate accumulation metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 167:635-643.
26. Conklin, P. L. 2001. Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ. 24:383-394.
27. Crawford, N. M., and A. D. M. Glass. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3(10):389-395.
28. Crawford, R. F., W. K. Kennedy, and W. C. Johnson. 1961. Some factors that affect nitrate accumulation in forages. Agron. J. 53: 159-162.
29. de la Haba, P., E. Agüera, L. Benitez, and J. M. Maldonado. 2001. Modulation of nitrate reductase activity in cucumber (Cucumis sativus) roots. Plant Sci. 161:231-237.
30. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3):350-356.
31. Eichelmann, H., and A. Laisk. 1999. Ribulose-1,5-bisphosphate carboxylase/oxygenase content, assimilatory charge, and mesophyll conductance in leaves. Plant Physiol. 119:179-189.
32. Elia, A., P. Santamaria, and F. Serio. 1998. Nitrogen nitrition, yield and quality of spinach. J. Sci. Food Agric. 76:341-346.
33. Elia, A., and F. Serio. 1999. Growing nitrate free endive in soiless systems. Acta Hortic. 481:267-271.
34. Favell, D. J. 1998. A comparison of the vitamin C content of fresh and frozen vegetables. Food Chem. 62(1):59-64.
35. Fonseca, F., C. G. Bowsher, and J. Stulen. 1997. Impact of elevated atmospheric CO2 on nitrate reductase transcription and activity in leaves and roots of Plantago major. Physiol. Plant. 100:940-948.
36. Forde, B. G. 2000. Nitrate transporters in plants: structure, function and regulation. Biochimica et Biophysica Acta 1465:219-235.
37. Gaudreau, L., J. Charbonneau, L. P. Vezina, and A. Gosselin. 1995. Effects of photoperiod and photosynthetic photon flux on nitrate content and nitrate reductase activity in greenhouse-grown lettuce. J. Plant Nutr. 18:437-453.
38. Gebauer, G., A. Melzer, and H. Rehder. 1984. Nitrate content and nitrate reductase activity in Rumex obtusifolis L. Oecologia 63:136-142.
39. Geiger, M., V. Haake, F. Ludewig, U. Sonnewald, and M. Stitt. 1999. The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant Cell Environ. 22:1177-1199.
40. Gil, M. J., F. Ferreres, and F. A. Tomás-Barberán. 1999. Effect of postharvst storage and processing on the antioxidant consitituents (flavonoids and vitamin C) of fresh-cut spinach. J. Agric. Food Chem. 47:2213-2217.
41. Granstedt, R. C. and R. C. Huffaker. 1982. Identification of the leaf vacuole as a major nitrate storage pool. Plant Physiol. 70:410-413.
42. Gundimeda, U., A. N. Naidu, and K. Krishnaswamy. 1993. Dietary intake of nitrate in India. J. Food Compos. Anal. 6:242-249.
43. Heimdal, H., B. F. Kühn, L. Poll, and L. M. Larsen. 1995. Biochemical changes and sensory quality of shredded and MA-packaged iceberg lettuce. J. Food Sci. 60(6):1265-1268.
44. Herrmann, B., and U. Feller. 1998. CO2, light and temperature influence senescence and protein degradation in wheat leaf segments. Physiol. Plant. 103:320-326.
45. Hunter, K. J., and J. M. Fletcher. 2002. The antioxidant activity and composition of fresh, frozen, jarred and canned vegetables. Innov. Food Sci. Emerg. Technol. 3:399-406.
46. Jacxsens, L., F. Devlieghere, C. Van der Steen, and J. Debevere. 2001. Effect of high oxygen modified atmosphere packaging on microbial growth and sensorial qualities of fresh-cut produce. Int. J. Food Microbiol. 71:197-210.
47. Jaworska, G. 2005. Content of nitrates, nitrites, and oxalates in New Zealand spinach. Food Chem. 89:235-242.
48. Jayas, D. S., and S. Jeyamkondan. 2002. Modified atmosphere storage of grains meats fruits and vegetables. Biosyst. Eng. 82(3):235-251.
49. Kader, A. A. 1986. Biochemical and physiological basis for effects of controlled and modified atmospheres on fruits and vegetables. Food Technol. 40:99-104.
50. Kader, A. A., D. Zagory, and E. L. Kerbel. 1989. Modified atmosphere packaging of fruits and vegetables. Food Sci. Nutri. 28(1):1-30.
51. Kailasapathy, K., and T. Koneshan. 1986. Effect of wilting on the ascorbate content of selected fresh green leafy vegetables consumed in Sri Lanka. J. Agric. Food Chem. 34:259-261.
52. Kaiser, W. M., and S. C. Huber. 1994. Posttranslational regulation of nitrate reductase in higher plants. Plant Physiol. 106:817-821.
53. Kang, H. M., K. W. Park, and M. E. Saltveit. 2002. Elevated growing temperatures during the day improve the postharvest chilling tolerance of greenhouse-grown cucumber (Cucumis sativus) fruit. Postharvest Biol. Technol. 24:49-57.
54. Larios, B., E. Agüera, P. de la Haba, R. Pĕrez-Vicente, and J. M. Maldonado. 2001. A short-term exposure of cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate reductase expression and activity. Planta 212:305-312.
55. Lee, S. K., and A. A. Kader. 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 20:207-220.
56. Lipton, W. J. 1987. Senescence of leafy vegetables. Hortic. Sci. 22:854-858.
57. Loewus, F. A. 1999. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52:193-210.
58. Masih, L., H. Roginski, R. Premier, B. Tomkins, and S. Ajlouni. 2002. Soluble protein content in minimally processed vegetables during storage. Food Res. Int. 35:697-702.
59. Maynard, D. N., A. V. Barker, P. L. Minotti, and N. H. Peck. 1976. Nitrate accumulation in vegetables. Adv. Agron. 28: 71-118.
60. McCall, D., and J. Willumsen. 1998. Effects of nitrate , ammonium and chloride application on the yield and nitrate content of soil-grown lettuce. J. Hortic. Sci. 73(5):698-703.
61. Mencarelli, F., R. Botondi, and D. Moraglia. 1989. Postharvest quality maintenance of new varieties of tomato, pepper and eggplant with small size fruits. Acta Hortic. 244:235-241.
62. Miccolis, V., and M. E. Saltveit. 1995. Influence of storage period and temperature on the postharvese characteristics of six melon (Cucumis melo L., Inodorus Group) cultivars. Postharvest Biol. Technol. 5:211-219.
63. Mozafar, A. 1995.Decreasing the NO3 and increasing the vitamin C contents in spinach by a nitrogen deprivation method. Plant Foods Hum. Nutr. 49:155-162.
64. Padu, E., H. Kollist, I. Tulva, E. Oksanen, and H. Moldau. 2005. Components of apoplastic ascorbate use in Betula pendula leaves exposed to CO2 and O3 enrichment. New Phytol. 165:131-142.
65. Prakash, D., R. Nath, and M. Pal. 1995. Composition and variation in vitamin C, carotenoids, protein, nitrate and oxalate contents in Celosia leaves. Plant Foods Hum. Nutr. 47:221-226.
66. Prange, R. K., and P. D. Lidster. 1991. Controlled atmosphere and lighting effects on storage of winter cabbage. Can. J. Plant Sci. 71:263-268.
67. Prasad, P. V. V., K. J. Boote, J. C. V. Vu, and L. H. Allen. 2004. The carbohydrate metabolism enzymes sucrose-P synthase and ADG-pyrophoshporylase in phaseolus bean leaves are up-regulated at elevated growth carbon dioxide and temperature. Plant Sci. 166:1565-1573.
68. Ratanachinakorn, B., A. Klieber, and D. H. Simons. 1997. Effect of short-term controlled atmospheres and maturity on ripening and eating quality of tomatoes. Postharvest Biol. Technol. 11:149-154.
69. Sánchez-Mata, M. C., M. Cámara, and C. Díez-Marqués. 2003. Extending shelf-life and nutritive value of green beans (Phaseolus vulgaris L.), by controlled atmosphere storage: Macronutrients. Food Chem. 80:309-315.
70. Santamaria, P., A. Elia, and M. Gonnella. 1997. Changes in nitrate accumulation and growth of endive plants during light period as affected by nitrogen level and form. J. Plant Nutr. 20: 1255-1266.
71. Santamaria, P., A. Elia, F. Serio, and E. Todaro. 1999. A survey of nitrate and oxalate content in fresh vegetables. J. Sci. Food Agric. 79:1882-1888.
72. Sato, F., H. Yoshioka, T. Fujiwara, H. Higashiio, A. Uragami, and S. Tokuda. 2004. Physiological responses of cabbage plug seedlings to water stress during low-temperature storage in darkness. Sci. Hortic. 101:349-357.
73. Scheible, W-R., M. Lauerer, E-D. Schulze, M. Caboche, and M. Stitt. 1997. Accumulation of nitrate in the shoot acts as signal to regulate shoot-root allocation in tobacco. Plant J. 11:671-691.
74. Singh, B., C. C. Yang, and D. K. Salunkhe. 1972. Controlled atmosphere storage of lettuce. 1. Effect on quality and the respiration rate of lettuce heads. J. Food Sci. 37:48-51.
75. Singh, J. P. 1988. A rapid method for determination of nitrate in soil and plant extracts. Plant Soil 110:137-139.
76. Singh, R., and B. O. Juliano. 1977. Free sugars in relation to starch accumulation in developing rice grain. Plant Physiol. 107:673-677.
77. Stitt, M. 1999. Nitrate regulation of metabolism and growth. Plant Biol. 2:178-186.
78. Stitt M., and W-R. Scheible. 1998. Understanding allocation to shoot and root growth will require molecular information about which compounds act signals for the plant nutrient status, and how meristem activity and cellular growth are regulated: Opinion. Plant Soil 201:259-263.
79. Stitt, M., and A. Krapp. 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ. 22:583-621.
80. Taber, H. G. 2001. Petiole sap nitrate sufficiency values for fresh market tomato production. J. Plant Nutri. 24(6):945-959.
81. Takei, K., T. Takahashi, T. Sugiyama, and T. Yamaya. 2002. Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. J. Exp. Bot. 53:971-977.
82. Terada, M., Y. Watanabe, M. Kunitomo, and E. Hayashi. 1978. Differential rapid analysis of ascorbic acid and ascorbic acid-2-sulfate by dinitrophenyl-hydrazine method. Anal. Biochem. 84:604-608.
83. Tian, S., Y. Xu, A. Jiang, and Q. Gong. 2002. Physiological and quality responses of longan fruit to high O2 or high CO2 atmospheres in storage. Postharvest Biol. Technol. 24:335-340.
84. Touchette, B. W., and Burkholder, J. 2001. Nitrate reductase activity in a submersed marine angiosperm: Controlling influences of environmental and Physiological factors. Plant Physiol. Biochem. 39:583-593.
85. Trinder, P. 1969. Determination of glucose in blood using glucose oxidease with an alternative oxygen acceptor. Ann. Clin. Biochem. 6:24.
86. van Eysinga, R. 1984. Nitrate in vegetables under protected cultivation. Acta Hortic. 145: 251-256.
87. Wang, C. Y. 1979. Effect of short-term high CO2 treatment on the market quality of stored broccoli. J. Food Sci. 44:1478-1482.
88. Wang, C. Y. 1983. Postharvest responses of Chinese cabbage to high CO2 treatment or low O2 storage. J. Am. Soc. Hortic. Sci. 108(1):125-129.
89. Wang, C. Y., and L. Qi. 1997. Modified atmosphere packaging alleviates chilling injury in cucumbers. Postharvest Biol. Technol. 10:195-200.
90. Wills, R. B. H., P. Wimalasiri, and H. Greenfield. 1984. Dehydroascorbic acid levels in fresh fruit and vegetables in relation to total vitamin C activity. J. Agric. Food Chem. 32:836-838.
91. Wright, K. P., and A. A. Kader. 1997. Effect of slicing and controlled-atmosphere storage on the ascorbate content and quality of strawberries and persimmons. Postharvest Biol. Technol. 10:39-48.
92. Yordanov, N. D., E. Novakova, and S. Lubenova. 2001. Consecutive estimation of nitrate and nitrite ions in vegetables and fruits by electron paramagnetic resonance spectrometry. Anal. Chim. Acta 437:131-138.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top