跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/21 23:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:萬艾儒
論文名稱:利用二維電泳研究水稻OsCDPK1之訊息傳遞路徑
論文名稱(外文):Study on rice OsCDPK1 signal transduction pathway by using two dimensional eletrophoresis
指導教授:侯新龍
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農業生物技術研究所
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:二維電泳OsCDPK1
相關次數:
  • 被引用被引用:1
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們實驗室已建立一種Calcium-dependent protein kinase
(OsCDPK1)基因靜默(RNAi)之轉基因水稻,並發現幼苗之生長發育
較野生型(WT)快。本研究即嘗試以蛋白質體學方式,將十天大之
WT 及RNAi 水稻幼苗經缺水處理後,萃取水稻幼苗地上部蛋白質,
並利用蛋白質二維電泳(2-D)方法,分析在WT 與RNAi 水稻植株間
的蛋白質表現是否有所差異,初步結果發現9 個蛋白質點表現具明
顯差異,其中有7 個蛋白質點在WT 中表現量較多,分別為
osjnbb0048e02.12 protein 、probenazole-inducible protein 、
fructose-bisphosphate aldolase 、putative ferredoxin-NADP(H)
oxidoreductase、RNA binding protein、carbonic anhydrase-like protein及sedoheptulose-1,7-bisphosphatase precursor;有兩個蛋白質點在RNAi 植株中表現量較多,分別是putative vacuolar proton-ATPase 及fibrillin-like protein。另外,本實驗也構築了OsCDPK1 的蛋白質表現載體,並以分離及純化OsCDPK1 蛋白質,未來將製備成抗體,利用免疫分析的方法探討水稻在不同的發育生長時期、不同的環境逆境下,對OsCDPK1 蛋白質的表現量及活性的影響。
Previously, a calcium-dependent protein kinase (OsCDPK1), whose gene silencing (RNAi) of transgenic rice have been produced in our lab. The seedling growth rate of RNAi is higher than wild type (WT). In this study, based on proteomics, in order to identify those differentially expressed proteins, total protein was purified from water stressed of 10-d old rice seedling of WT and RNAi, and suggested to 2-D protein electrophoresis. The primary results showed that 9 of proteins expressed were differentially between WT and RNAi plants. There are 7 spots of proteins expressed in WT were much higher than in RNAi plants, and were characterized as: osjnbb0048e02.12 protein, probenazole-inducible protein, fructose-bisphosphate aldolase, putative ferredoxin-NADP(H) oxidoreductase, RNA binding protein, carbonic anhydrase-like protein, and sedoheptulose-1, 7-bisphosphatase precursor, respectively. The other two of proteins were found that expressed much higher in RNAi than in WT plants, they were belong with putative vacuolar proton-ATPase and fibrillin-like protein, respectively. Furthermore, I have been constructed an OsCDPK1 of protein expression vector, and expressed and purified the OsCDPK1 recombinant protein from E.coli BL21. Further study will proceeding the antibody preparation to characterize the protein expression level and the kinase activity of OsCDPK1 during various growth stages of rice plants.
中文摘要.........................Ⅰ
英文摘要.........................Ⅱ
誌謝辭..........................Ⅲ
目錄...........................Ⅳ
圖表目錄.........................1
前人研究.........................3
材料與方法........................12
結果...........................29
討論...........................65
參考文獻.........................70
Akimoto-Tomiyama C, Sakata K, Yazaki J, Nakamura K, Fujii F,
Shimbo K, Yamamoto K, Sasaki T, Kishimoto N, Kikuchi S,
Shibuya N, Minami, E (2003) Rice gene expression in response to N-acetylchitooligosaccharide elicitor : comprehensive analysis by DNA microarray with randomly selected ESTs. Plant Mol Biol. 52:537–551.
Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, SatoM, Furuhashi H, Mujin T, Takaiwa F, Wu CY, Tada Y,Satozawa T,Sakamoto M, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose is a possible factor.
Plant Cell. 14: 619-628.
Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S (2005)
Genome-wide identification of the rice calcium-dependent protein
kinase and its closely related kinase gene families: comprehensive
analysis of the CDPKs gene family in rice. Plant Cell Physiol. 46:
356–366.
Breviario D, Morello L, Gianì S (1995) Molecular cloning of two novel
rice cDNA sequences encoding putative calcium-dependent protein
kinases. Plant Mol Biol. 27: 953–967.
Cadet F, Meunier JC (1988) Spinach (Spinacia oleracea) chloroplast
sedoheptulose-1,7-bisphosphatase. Activation and deactivation, and
immunological relationship to fructose-1,6-bisphosphatase.Biochem J.
1: 243-248.
Chang WW, Huang L, Shen M, Webster C, Burlingame AL, Roberts
JK (2000) Patterns of protein synthesis and tolerance of anoxia in root
tips of maize seedlings acclimated to a low-oxygen environment, and
identification of proteins by mass spectrometry. Plant Physiol. 122:
295-318.
Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium
signaling through protein kinases. The Arabidopsis
calcium-dependent protein kinase gene family. Plant Physiol. 129:
469-485.
71
Chico JM, Raices M, Tellez-Inon MT, Ulloa RM (2002) A
calcium-dependent protein kinase is systemically induced upon
wounding in tomato plants. Plant Physiol. 128: 256-270.
Dammann C, Ichida A, Hong B, Romanowsky S, Hrabak EM,
Harmon AC, Pickard BG, Harper JF (2003) Subcellular targeting of
nine Calcium-Dependent Protein Kinase isoforms from Arabidopsis,
Plant Physiol. 132:1840-1848
Davletova S, Mesyaros T, Miskolczi P, Oberschall A, Torok K,
Magyar Z, Dudits S, Deak M (2001) Auxin and heat shock activation
of a novel member of the calmodulin-like domain protein kinase gene
family in cultured alfalfa cells. J. Exp. Bot. 52: 215–221.
Frattini M, Morello L, Breviario D (1999) Rice calcium-dependent
protein kinase isoforms OsCDPK2 and OsCDPK11 show different
responses to light and different expression patterns during seed
development. Plant Mol Biol. 41: 753–764.
Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove
J, Job D (2001) Proteomic analysis of Arabidopsis seed germination
and priming. Plant Physiol. 126: 835-848.
Ganesh KA, Randeep R, Masami Y, Akihiro K, Hikaru S (2002)
Proteome analysis of differentially displayed proteins as a toll for
investigating ozone stress in rice (Oryza sztiva L.) seedlings.
Proteomics. 2: 947-959.
Genty B, Briantais J, Baker N (1989) The relationship between the
quantum yield of photosynthetic electron transport and quenching of
chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87–92.
Hrabak EM (2000) Calcium-dependent protein kinases and their
relatives. Adv Bot Res 32: 185–223.
Hrabak EM , Chan CWM, Gribskov M, Harper JF, Choi JH, Halford
NG, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M,
Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis
CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132:
666–680.
Harmon AC, Gribskov M, Gubrium E, Harper JF (2001) The CDPK
72
superfamily of protein kinases. New Phytol. 151: 175–183.
Harmon AC, Gribskov M, Haper JF (2000) CDPKs:a kinase for every
Ca2+ signal? Trends Plant Sci. 5: 154-159.
Harmon AC, Putnam-Evans C, Cormier MJ (1987) A calcium
dependent but calmodulin-independent protein kinase from soybean.
Plant Physiol. 83: 830–837
Harper JF, Binder BM, Sussman MR (1993) Calcium and lipid
regulation of an Arabidopsis protein kinase expressed in E. coli.
Biochem. 32: 3282-3290.
Harper JF, Hung JF, Lloyd SJ (1994) Genetic identification of an
autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain.
Biochem. 33: 7267–7277.
Harper JF, Sussman MR, Scheller EG, Putnam-Evans C,
Charbonneau H, Harmon AC (1991) A calcium dependent protein
kinase with a regulatory domain similar to calmodulin. Science. 252:
951–954.
Hutchison RS, Groom Q, Ort DR. (2000) Differential effect on
chillinginduced photooxidation on the redox regulation of
photosynthetic enzymes. Biochem. 39: 6679-6688.
Kawasaki T, Hayashida N, Baba T, Shinozaki K, Shimada H (1993)
The gene encoding a calcium-dependent protein kinase located near the
sbe1 gene encoding starch branching enzyme I is specifically
expressed in developing rice seeds. Gene. 129: 183-189.
Knight H, Knight, MR (2001) Abiotic stress signaling pathways:
Specificity and cross-talk. Trends Plant Sci. 6: 262-267.
Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Hatnes PA,
Hays L, Schieltz D, Ulaszek R, Wei J, Wolters D, Yates JR Ⅲ (2002)
Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci,
USA. 99: 11969-11974.
Konishi H, Yamane H, Maeshima M, Komatsu S (2004)
Characterization of fructose-bisphosphate aldolase regulated by
gibberellin in roots of rice seedling. Plant Mol Biol. 56: 839-848.
73
Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt
tolerance. Science. 280: 1943-1945.
Llop-Tous I, Dominguez-Puigjaner E, Vendrell M (2002) Characterization
of a strawberry cDNA clone homologous to calcium-dependent protein
kinases that is expressed during fruit ripening and affected by low
temperature. J Exp Bot. 53: 2283-2285.
Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W
(2002) Calmodulins and calcineurin B-like proteins: calcium sensors
for specific signal response coupling in plants. Plant Cell. 14:
S389-S400.
Martin H, Randeep R, Ganesh KA, Masami Y, Anna P (2001)
High-resolution two-dimentional electrophoresis separation of proteins
from metal-stressed rice (Oryza sativa L.) leaves: drastic reductions/
fragmentations of ribulose-1, 5-bisphosphate carbosylate/ oxygenase
and induction of stress-related proteins. Electrophoresis. 22:
2824-2831.
Martin ML, Busconi L (2000) Membrane localization of a rice
calcium-dependent protein kinase (CDPK) is mediated by
myristoylation and palmitoylation. Plant J 24: 429–435.
Martin ML, Busconi L (2001) A rice membrane-bound
calcium-dependent protein kinase is activated in response to low
temperature. Plant Physiol. 125: 1442-1449.
Midoh N, Iwata, M (1996) Cloning and characterization of a
probenaole-inducible gene for an intracelluar pathogenesis-related
protein in rice. Plant Cell Physiol. 37: 9-18.
Millar AH, Sweetlove LJ, Giege P, Leaver CJ (2001) Analysis of the
Arabidopsis mitochondrial proteome. Plant Physiol. 127: 1711-1727.
Mizuno K, Kawasaki T, Shimada H, Satoh S, Kobayashi E,
Okumura S, Arai Y, Baba T (1993) Alteration of the structural
properties of starch components by the lack of an isoform of starch
branching enzyme in rice seeds. J Bio Chem. 268: 19084-19091.
Morello L, Frattini M, Giani S, Christou P, Breviario D (2000)
Overexpression of the calcium-dependent protein kinase OsCDPK2 in
transgenic rice is repressed by light in leaves and disrupts seed
74
development. Transgenic Research. 9: 453-62.
Murai H, Hashimoto Z, Sharma PN, Shimizu T, Murata K, Takumi
S, Mori N, Kawasaki S, Nakamura C (2001) Construction of a
high-resolution linkage map of a rice brow planthopper ( Nilaparvata
lugensStål) resistance gene bph2. Theor Appl Genet. 103: 526-532.
Murillo I, Jaeck E, Cordero MJ, San Segundo B (2001)
Transcriptional activation of a maize calcium-dependent protein kinase
gene in response to fungal elicitors and infection. Plant Mol Biol. 45:
145-158.
Patharkar OR, Cushman JC (2000) A stress-induced
calcium-dependent protein kinase from Mesembryanthemum
crystallinum phosphorylates a two-component pseudo-response
regulator. Plant Cell. 24: 679-691.
Peltier JB, Frison G, Kalume DE, Roepstorff P, Nilsson F, Adamska I,
Wijk KJ (2000) Proteomics of the chloroplast: Systematic
identification and targeting analysis of luminal and peripheral
thylakoid proteins. Plant Cell. 12: 319-341.
Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci. 160:
381-404.
Roberts D, Harmon A (1992) Calcium-Modulated Proteins: Targets of
Intracellular Calcium Signals in Higher Plants. Annu Rev Plant Physiol.
Plant Mol Biol 43: 375-414.
Romeis T, Ludwig AA, Martin R, Jones JDG (2001)
Calcium-dependent protein kinases play an essential role in a plant
defence response. EMBO J. 20: 5556-5567.
Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000)
Over-expression of a single Ca2+-dependent protein kinase confers
both cold and salt/drought tolerance on rice plants. Plant J. 23:
319-327.
Saijo Y, Kinoshita N, Ishiyama K, Hata S, Kyozuka J, Hayakawa T,
Nakamura T, Shimamoto K, Yamaya T, Izui K (2001) A
Ca2+-dependent protein kinase that endows rice plants with cold- and
salt-stress tolerance functions in vascular bundles. Plant Cell Physiol.
42: 1228-1233.
75
Saijo Y, Hata S, Sheen J, Izui K (1997) cDNA cloning and prokaryotic
expression of maize calcium-dependent protein kinases. Biochim
Biophys Acta. 1350: 109-114.
Sassenrath GF, Ort DR, Portis AR Jr. (1990) Impaired reductive
activation of stromal bisphosphatase in tomato leaves following
low-temperature exposure at high light. Arch Biochem Biophys. 282:
302-308.
Satterlee JS, Sussman MR (1998) Unusual membrane-associated
protein kinases in higher plant. J Membrane Biol. 164: 205-213.
Scrase-Field SA, Knight MR (2003) Calcium: just a chemical switch?
Current Opin Plant Biol. 6: 500–506.
Shen Shihua, Yuxiang Jing, Tingyun Kuang (2003) Proteomics approach
to identify wound-response related proteins from rice leaf sheath.
Proteomics. 3: 527-535.
Soderling TR, Stull JT (2001) Structure and regulation of
calcium/calmodulin-dependent protein kinases. Chem Rev. 101:
2341-2352.
Stone JM, Walker JC (1995) Plant protein kinase families and signal
transduction. Plant Physiol. 108: 451-457.
Takezawa D, Patil S , Bhatia A, Poovaiah BW (1996)
Calcium-dependent protein kinase gene in corn roots. J Plant physiol.
149: 329-335.
Tanaka N, Matsuoka M, Kitano H, Asano T, Kaku, H and Komatsu S
(2005) gid1, a gibberellin-insensitive dwarf mutant, shows altered
regulation of probenazole-inducible protein (PBZ1) in response to cold
stress and pathogen attack. Plant Cell Environ. 28: 1-13.
Tsujimoto H, Hirano H (2003) Wheat proteomics: Relationship between
fine chromosome deletion and protein expression. Proteomics. 3:
307-316.
Ventelon-Debout M, Delalande F, Brizard JP, Diemer H, Van
Dorsselaer A, Brugidou C (2004) Proteome analysis of
cultivar-specific deregulations of Oryza sativa indica and O. sativa
japonica cellular suspensions undergoing rice yellow mottle virus
76
infection. Proteomics. 4: 216-225.
Vitart V, J Chritodoulou, JF Huang, WJ Chazin, JF Harper (2000)
Intramolecular activation of a calcium dependent protein kinase is
disrupted by insertions in the tether that connects the calmodulin-like
domain to the kinase. Biochemistry. 39: 4004-4011.
Weiss W, Huber G, Engel KH, Pethran A, Dunn MJ, Gooley A, Gorg
A (1997) Identification and characterization of wheat grain
albumin/globulin allergens. Electrophoresis. 18: 826-833.
Weljie A M, Clarke TE, Juffer AH, Harmon AC, Vogel HJ (2000)
Comparative Modeling Studies of the Calmodulin-Like Domain of
Calcium-Dependent Protein Kinase From Soybean Proteins. Plant Cell
39: 343-357.
Wilkinson DL, Harrison RG, (1991) Predicting the solubility of
recombinant proteins in Escherichia coli. Bio/Technology 9: 443−338.
William WPC, Lan H, Min S, Cecelia W, Alma LB, Justin KMR
(2000) Patterns of protein synthesis and tolerance of anoxia in root tips
of maize seedlings acclimated to a low-oxygen environment, and
identification of proteins by mass spectrometry. Plant Physiol. 122:
295-317.
Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold,
drought, and salt stress. Plant Cell. 14: 165- 183.
Yang G, Shen S, Yang S, Komatsu S (2003) OsCDPK13, a
calciumdependent protein kinase gene from rice, is induced in
response to cold and gibberellin. Plant Physiol Biochem. 41: 369–374.
Zhang L, Liu BF, Liang S, Jones RL, Lu YT (2002) Molecular and
biochemical characterization of a calcium/calmodulin-binding protein
kinase from rice. Biochem J. 368: 145-157.
Zhang L, Lu YT (2003) Calmodulin-binding protein kinases in plants.
Plant Sci. 8: 123-127.
Zielinski RE (1998) Calmodulin and calmodulin-binding proteins in
plants. Annu Rev Plant Physiol Mol. 49: 697–725.
77
Zivy M, Kl Madidi S, Thiellement H (1995) Distance indices in a
comparison between the A, D, I and R genomes of the Triticeae tribe.
Electrophoresis. 16: 1295-1300.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文