跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/04 08:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊明偉
研究生(外文):Ming-Wei Yang
論文名稱:利用動力學方法來判定胺基酸對金屬的親和力
論文名稱(外文):Relative Metal Affinities of α–Amino Acids Determined by Using the Kinetic Method
指導教授:何彥鵬
指導教授(外文):Yen-Peng Ho
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:94
語文別:英文
論文頁數:87
中文關鍵詞:金屬親合力胺基酸動力學方法
外文關鍵詞:metalamino acidkinetic methodaffinity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
Intrinsic properties of molecules provide an important benchmark for understanding properties in solution and are usually investigated by theoretical calculations and gas-phase experiments. Proton and metal-ion affinities are examples of intrinsic properties and have been measured successfully. Data obtained using kinetic methods have been analyzed to provide relative ion affinities for the competitive dissociation involved. In this work, we studied the relative sodium and calcium ion affinities of 20 common α–amino acids. The relative sodium ion affinities of amino acid anions are obtained by comparing the ratios of intensities of [A.A.1-H+]- and [A.A.2-H+]- dissociating from [NaI(A.A.1)(A.A.2)-2H+]-. The relative calcium ion affinities of amino acid complexes are obtained by comparing the ratios of [CaII(A.A.1)(A.A.2)-H+]+ and [CaII(A.A.1)2 -H+]+ dissociating from [CaII(A.A.1)2(A.A.2)-H+]+ and the ratios of [CaII(A.A.1)(A.A.2)-H+]+ and [CaII(A.A.2)2-H+]+ dissociating from [CaII(A.A.1)(A.A.2)2-H+]+. Calcium-bound dimeric cluster ions are too strongly bound to create simple Ca2+-bound monomeric ions. By contrast with the dimeric cluster ions, the Ca2+-bound trimeric cluster ions fragment readily by simple ligand losses. The affinities involve both deprotonation and calcium ion binding energies, so we subtracted the deprotonation energies to obtain the relative calcium ion binding energies. The temperature required in calculating the metal binding energies of amino acids was obtained by measuring the ratio of [A.A.1+H+]+ and [A.A.2+H+]+ dissociating from [A.A.1+ A.A.2+H+]+.
Catalog

Abstract
Introduction……………………………………………………………1

1.1 Importance of Metal in Biology………………………………1
1.2 The Kinetic Method…………………………………………....3
1.3 The Development of Mass Spectrometry………………………5
1.4 Principles of Electrospray Ionization…….………………8
1.5 Tandem Mass Spectrometry………………………………….…11

Experimental Section……………………………………………….12

2.1 Chemicals…………………………………………………………12
2.2 Mass Spectrometry………………………………………………12
2.3 The Kinetic Method…..……………………………………….14
2.3.1. Sodium Ion Affinities…………………….………………14
2.3.2. Calcium Ion Affinities…………………………………..17
2.3.3. Effective Temperature…………………………………….19

Results and Discussion………………………….…………………20

3.1 Dissociation of the Na+-Bound Heterodimers………….…20
3.2 Sodium Affinities of Amino Acids………………………….27
3.3 Sodium Affinity Order of Amino Acids…………………….37
3.4 Dissociation of the Ca2+-Bound Trimers………………….38
3.5 Calcium Affinities of Amino Acid Complexes…………….44
3.6 Comparison of the Calcium Ion Affinity Order to Alkali Metal Ion Affinities………………………………………………52
3.7 The Relative Metal Binding Energies of Amino Acids….54
3.8 The Calcium Binding Energies of Amino Acids Complexes…..............................................61

Conclusions……………………………………………………………64

References……………………………………………………………65

Appendix I. Twenty Commonα–Amino Acids………………………71

Appendix II. Standard Deviation of Metal-Bound Amino Acid Pairs….................................................73
References

1. (a) Hughes, M. N. The Inorganic Chemistry of Biological Processes, 2nd ed.; Wiley: New York, 1972. (b) Berg, J. M. Cold Spring Harbor Symp. Quant. Biol. 1987.
2. (a) Creighton, T. E. Proteins: Structure and Molecular Properties, 2nd ed.; Freeman; New York, 1993. (b) Bertini, I.; Gray, H. B.; Lippard, S. J.; Valentine, J. S. Bioinorganic Chemistry; University Science Book: Mill Valley, CA, 1994.
3. (a) Kaim, W.; Schwedersli, B. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; John Wiley & Sons: Chichester, 1994. (b) Aidley D. J.; Stanfield P. R. Ion Channels: Molecules in Action, Cambridge University Press, Cambridge, 1996.
4. Baker, W. C.; Ketcham, L. K.; Dayhoff, M. O.; In Atlas of Protein Sequence and Structure, Vol. 5; Dayhoff, M. O., Ed.; National Biochemical Research Foundation: Silver Spring, MD, 1965.
5. Vogt, H. P.; Strassburger, W.; Wollmer, A.; Fleischhauer, J.; Bullard, B.; Mercola, D. J. Theor. Biol. 1979, 76, 297-310.
6. Reid, R. E.; Hodges, R. S. J. Theor. Biol. 1980, 84, 401-444.
7. Gariépy, J.; Hodges, R. S. FEBS Lett. 1983, 160, 1-6.
8. Crivici, A.; Ikura, M. Annu. Rev. Biophys. Struct. 1995, 24, 85-116.
9. Kretsinger, R. H.; Nockolds, C. E. J. Biol. Chem. 1973, 248, 3313-3326.
10. Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Mass Spectrom. Rev. 1994, 13, 287-339.
11. Cooks, R G.; Kruger, T. L. J. Am. Chem. Soc. 1977, 99, 1279-1281.
12. Grual, S. T.; Schnute, M. E.; Squires, R. R. Int. J. Mass Spectrom. Ion Processes, 1990, 96, 181-198.
13. Boand, G.; Hourient, R.; Gaumann, T. J. Am. Chem. Soc. 1983, 105, 2203-2206.
14. McLuckey, S. A.; Shoen, A. E.; Cooks, R. G., J. Am. Chem. Soc. 1982, 104, 848-850.
15. Fourine, J. J.; Puzo, G. Anal. Chem. 1985, 57, 2287-2289.
16. Eberlin, M. N.; Kotiaho, T.; Shay, B. J.; Yang, S. S.; Cooks, R. G. J. Am. Chem. Soc. 1994, 116, 2457-2465.
17. Burinsky, D. J.; Fukuda E. K.; Campana, J. E. J. Am. Chem. Soc. 1984, 106, 2770-2771.
18. (a) Bojesen, G. J. Am. Chem. Soc. 1987, 109, 5557-5558. (b) Isa, K.; Omote, T.; Amaya, M. Org. Mass Spectrom. 1990, 25, 620-628. (c) Wu, Z.; Fenselau, C. Rapid Commun. Mass Spectrom. 1992, 6, 403-405. (d) Bojesen, G.; Breindahl, T. J. Chem. Soc., Perkin Trans. II 1994, 1029-1037.
19. Wu, Z.; Fenselau, C. J. Am. Chem. Soc. Mass Spectrom. 1992, 3, 863-866.
20. Zhang, K.; Zimmerman, D. M.; Chung-Phillips, A.; Cassady, C. J. J. Am. Chem. Soc. 1993, 115, 10812-10822.
21. Meot-Ner, M.; Hunter, E. P.; Field, F. H. J. Am. Chem. Soc. 1979, 101, 686-689.
22. Locke, M. J.; McIver, R. T. J. Am. Chem. Soc. 1983, 105, 4226-4232.
23. Gorman, G. S.; Speir, J. P.; Turner, C. A.; Amster, I. J. J. Am. Chem. Soc. 1992, 114, 3986-3988.
24. Wu, J.; Lebrilla, C. B. J. Am. Chem. Soc. 1993, 115, 3270-3275.
25. Yao, Z.; Wan, T. S. M.; Kwong, K.; Che, C. Chem. Commun. 1999, 20, 2119-2120.
26. Tao, W. A.; Zhang, D.; Wang, F.; Thomas, P.; Cooks, R. G. Anal. Chem. 1999, 71, 4427-4429.
27. Tao, W. A.; Zhang D., Nikolaev, E. N., Cooks, R. G., J. Am. Chem. Soc. 2000, 122, 10598-10609.
28. Thomson, J. J. Rays of Positive Electricity and Their Application to Chemical Analyses. Longmans, Green and Co, London, 1913.
29. Aston, F. W. Mass Spectra and isotopes, ed 3. Edward Arnold and Co, London, 1942.
30. Meyerson, S. Anal Chem 1994, 66, 960A-964A.
31. Biemann, K. Mass Spectrometry: Applications to Organic Chemistry. McGraw-Hill, New York, 1962.
32. Nier, A. O. Rev Sci Instrum. 1947, 18, 415-421.
33. Munson, M. S. B.; Field, F. H. J. Am. Chem. Soc. 1960, 88, 2621-2630.
34. Beckey, H. D.; Oxford, P. 1977.
35. Barber, M.; Bordoli, R. S.; Elliott, G. J.; Sedgwick, R. D.; Tyler, A. N. Anal. Chem. 1982, 54, 645A-657A.
36. Benninghoven, A.; Rudenauer, F. G.; Werner, H. W. Wiley, New York, 1987.
37. Cotter, R. J. Anal. Chem. 1988, 60, 817A.
38. Unsold, E.; Hillenkamp, F.; Nitsche, R. Analysis. 1990, 4, 115.
39. Detter, L.; Hand, O.; Cooks, R. G.; Walton, R. A. Mass Spectrom Rev 1988, 7, 465-502.
40. David, D. E.; Michel, J. Prog Solid St. Chem. 1989, 19, 283-328.
41. Magnera, T. F.; David, D. E.; Stulik, D.; Orth, R. G.; Jonkman, H. T.; Michel, J. J. Am. Chem. Soc. 1989, 111, 5036-5043.
42. Yamashita, M.; Fenn, J. B. J. Phys. Chem. 1984, 88, 4451-4459.
43. Karas, M.; Hillenkamp, F. Anal. Chem. 1988, 60, 2299-2301.
44. Gaskell, S. J. J. Mass Spectrom. 1997, 32, 677-688.
45. Luettgens, U.; Roellgen, F. W. Proceeding of 39th ASMS Conference on Mass Spectrometry and Allied Topics, Nashville, Tenn., 1991, 439-440.
46. Waston, J. T. Introduction to Mass Spectrometry, Lippincott-Raven Publisher, New York, 1997.
47. Hoffmann E. D. J. Mass Spectrom. 1996, 31, 129-137.
48. Bojesen, G.; Breindahl, T.; Andersen, U. N. Org. Mass Spectrom. 1993, 28, 1448-1452.
49. Wan, Y. F.; Gronert, S.; Lebrilla, C. B. J. Am. Chem. Soc. 1999, 121, 1365-1371.
50. Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions; Wiley- Interscience: Lodon, 1972.
51. McLuckey, S. A.; Cameron, D.; Cooks, R. G. J. Am. Chem. Soc. 1981, 103, 1313-1317.
52. (a) Wu, Z.; Fenselau, C. Rapid Commun. Mass Spectrom. 1994, 8, 777-780. (b) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17, Suppl. 1. (c) Cerda, B. A.; Wesdemiotis, C. J. Am. Chem. Soc. 1995, 117, 9734-9739.
53. (a) Sigel, H.; Martin, R. B. Chem. Rev. 1982, 82, 385-426. (b) Meot-Ner, M. J. Am. Chem. Soc. 1988, 110, 3071-3075.
54. Kish, M. M.; Ohanessian, G.; Wesdemiotis, C. Int. J. Mass Spectrom. 2003, 227, 509-524.
55. Bai, Y.; Milne, J. S.; Mayne, L.; Englander, S. W. Proteins: Structure, Function, and Genetics 1993, 17, 75-86.
56. Nemirovskiy, O. V.; Gross, M. L. J. Am. Soc. Mass Spectrom. 2000, 11, 770-779.
57. (a) Moision, R. M.; Armentrout, P. B. J. Phys. Chem. A. 2006, 110, 3933-3946. (b) Moision, R. M.; Armentrout, P. B. Phys. Chem. Phys. Chem. 2004, 6, 2588-2599. (C) Ruan, C. H.; Yang, Z. B.; Hallowita, N.; Rogers, M. T. J. Phys. Chem. A. 2005, 109, 11539-11550.
58. Armentrout, P. B.; Rodgers, M. T. Acc. Chem. Res. 2004, 37, 989-998.
59. Andersen, U. N.; Bojesen, G. J. Chem. Soc., Perkins Trans. II 1997, 2, 323-327.
60. Thomas, P. D.; Koskinen, J. T.; Cooks, R. G. J. Mass Spectrom. 1999, 34, 85-92.
61. Vékey, K. J. Mass Spectrom. 1996, 31, 445-463.
62. Brauman, J. I.; Choo, B.; Zhong, M.; Craig, S. L. J. Phys. Chem. A 1997, 101, 19-24.
63. Majundar, T. J.; Clairet, F.; Tabet, J. C.; Cooks, R. G. J. Am. Chem. Soc. 1992, 114, 2897-2903.
64. Chen, L. Z.; Miller, J. M. Org. Mass Spectrom. 1992, 27, 883-890.
65. C. X.; Wu, Z.; Fenselau, C. J. Am. Chem. Soc. Mass Spectrom. 1993, 115, 4844-4848.
66. McLuckey, S. A.; Cooks, R. G.; Fulford, J. E. Int. J. Mass Spectrom. Ion Processes, 1983, 52, 165-174.
67. Chen, L. Z.; Miller, J. M. J. Organoment. Chem. 1993, 448, 225-232.
68. Cox, M. M.; Nelson, D. L. Lehninger Principles of Biochemistry, ed 3. Worth Publisher, New York, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top