跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹莉玟
研究生(外文):Li-Wen Chan
論文名稱:以功能性基因體和蛋白質體探討莫三鼻克吳郭魚在面臨滲透壓力下對其脾臟基因的影響
論文名稱(外文):The functional genomic and proteomic analysis of splenic genes from tilapia Oreochromis mossambicus, facing osmotic stress
指導教授:翁慶豐翁慶豐引用關係
指導教授(外文):Ching-Feng Weng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:102
中文關鍵詞:蛋白質體免疫力免疫相關性基因脾臟高滲透壓吳郭魚
外文關鍵詞:Hsp90IGF-IIGF-IIferritintransferrin2-D electrophoresisIgMMHC-Ihyperosmoticosmotic stresstilapiaMHC-IIlysozyme activityplasmaproliferationsplenocytesspleencortisolHbHsp70MALDI-TOF MSESI-MS/MSimmunity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
硬骨魚生理易受環境因子 (溫度、鹽度、溶氧量、pH值、農藥和重金屬離子) 改變而影響其生理反應,其中鹽度改變造成的緊迫對魚體免疫反應的影響尚未清楚。因此,本實驗欲在急遽鹽度刺激下,利用MTT assay測定吳郭魚脾臟細胞添加mitogens (LPS或Con A)以探討其對吳郭魚脾臟細胞增生能力的影響。首先在無添加LPS或Con A刺激下,實驗結果脾臟免疫細胞增生能力在高滲透壓 (500 mOsmol/kg) 刺激1, 4, 8和24小時無顯著改變。分別給予不同濃度cortisol (20 nM和200 nM) 刺激後,發現給予200 nM cortisol刺激4小時後顯著抑制脾臟細胞增生。同時在高滲透壓 (500 mOsmol/kg) 和20 nM cortisol刺激4小時後,明顯抑制脾臟細胞增生。由此可知,高滲透壓刺激下,不會促使其脾臟細胞增生,而額外給予200 nM cortisol則明顯抑制脾臟細胞增生。另外,在添加LPS或Con A刺激的實驗中,在高滲透壓刺激1-8小時,脾臟細胞增生能力顯著增加;給予20 nM cortisol刺激1-4小時,脾臟細胞增生能力均明顯增加;而給予200 nM cortisol刺激4-8小時,脾臟細胞增生能力明顯增加;同時給予高滲透壓 (500 mOsmol/kg) 與20 nM cortisol刺激1-8小時後,脾臟細胞增生能力均明顯增加;若同時給予高滲透壓 (500 mOsmol/kg) 與200 nM cortisol刺激4小時,脾臟細胞增生能力才顯著增加。由上述可知,給予較低劑量之cortisol (20 nM) 抑制脾臟細胞增生能力較弱,因此在刺激1-4小時,發現仍能使脾臟細胞顯著增生;給予200 nM cortisol抑制脾臟細胞增生能力較強,但刺激4-8小時脾臟細胞顯著增生。在in vitro實驗中,cortisol 在不同濃度及作用時間,其調節脾臟細胞增生方式不同,推測cortisol可能經由刺激或改變其他細胞激素 (cytokines),進而提高脾臟細胞增生。
本實驗將廣鹽性的莫三鼻克吳郭魚(Oreochromis mossambicus)由淡水轉移至25 ppt海水後不同時間,測定其plasma和脾臟lysozyme活性隨轉移時間持續顯著增加;鰓lysozyme活性則無顯著影響;頭腎lysozyme活性在轉移2小時內明顯增加。其次探討鹽度改變對吳郭魚脾臟中與stress反應有關之heat shock protein 70 (Hsp70) 和Hsp90、hemoglobin (Hb)、三種免疫相關性基因immunoglobulin M (IgM), major histocompatibility complex class Ι (MHC-I)、MHC classⅡ (MHC-Ⅱ)及基因表現的影響。將吳郭魚分別由淡水轉移至15、20、25、或35 ppt海水中2小時後,藉由半定量的RT-PCR/southern blotting方法分析Hsp70、Hsp90、Hb、IgM、MHC-Ⅰ及MHC-ⅡmRNA表現量,結果發現鹽度增加造成吳郭魚脾臟中Hsp70亦受不同鹽度的刺激後其表現量顯著增加,Hsp90在轉移至不同濃度海水2小時則無顯著改變。Hb、IgM、MHC-Ⅰ及MHC-Ⅱ mRNA表現量顯著高於長期淡水適應吳郭魚;而由此結果證實吳郭魚脾臟免疫相關基因的表現量在轉移至25 ppt海水2小時後有較顯著的影響。故將吳郭魚分別由淡水轉移至25 ppt海水1、2、4、8、16或 24小時,結果發現脾臟Hsp70在轉移4小時後表現量顯著增加。至於Hsp90表現量在轉移24小時和長期海水適應組才顯著增加。Hb mRNA表現量在轉移至25 ppt海水不同時間點均大於淡水組。IgM表現量在轉移至25 ppt 2小時達最大值 (2.22倍),其餘時間點則均隨轉移時間而持續增加。MHC-Ι表現量隨轉移時間的增長其表現量逐漸增加。MHC-Ⅱ表現量隨轉移不同時間顯著增加。由此證明在急遽鹽度的刺激下,提高吳郭魚脾臟免疫基因IgM、MHC-Ⅰ和MHC-Ⅱ mRNA表達,以因應環境改變增強其免疫力。
利用2-D gel electrophoresis分離由淡水轉移至25 ppt海水4, 8和16小時後之吳郭魚脾臟蛋白質,並透過MALDI-TOF MS, ESI-MS/MS或MALDI-TOF/TOF MS鑑定出其中44種蛋白質 (33種蛋白質表現量為up-regulation,11種蛋白質表現量為down-regulation) 表現量受鹽度刺激而改變。其次以RT-PCR 分析insulin-like growth factor Ⅱ (IGF-Ⅱ)和ferritin middle subunit mRNA表現量,藉以確認蛋白質體分析結果之真偽及蛋白質與基因層次之相關性,結果IGF-ⅡmRNA level,在轉移至25 ppt海水不同時間,其表現量為up-regulation,且IGF-Ⅱ也在轉移1小時後極顯著的增加 (22-34倍)。在高滲透壓下,吳郭魚脾臟ferritin middle and light subunit mRNA和protein level均受鹽度刺激顯著提高,推測ferritin可能是一種適應osmotic stress蛋白質。由此可知2-D gel蛋白質體分析受改變之蛋白質其可信度高且與基因表達之改變一致。
高滲透壓刺激下,促使吳郭魚plasma和脾臟 lysozyme活性增加,亦增加脾臟免疫基因IgM、MHC-Ⅰ和MHC-Ⅱ mRNA表達。在高滲透壓下,cortisol亦抑制脾臟免疫細胞增生。從魚類適應高滲透壓調節機制角度得知,魚類在適應高滲透壓環境時,體內GH和cortisol分泌增加,藉以提升高滲透壓產生緊迫的適應能力,同時也增加魚體內的免疫能力,以利其達成適應高滲透壓的環境,使得魚得以存活。
The physiological regulations of teleosts are associated with the changes of environmental factors (temperature, salinity, oxygen, pH, chemical, heavy metals). When a euryhaline (broad salinity) teleost goes from hyposmotic (FW) to hyperosmotic (SW) environment, however the consequence of immunological response in tilapia remains unclear. This study was conducted to examine the lysozyme activity, functional genomic and proteomic changes in the spleen of tilapia (Oreochromis mossambicus) during acute salinity challenge. Isolated primary cultured splenocyte under pre-incubation with high osmolarity (500 mOsmol/kg) or cortisol (20 nM and 200 nM) for 1, 4, 8 and 24 h without or with mitogens (LPS or Con A) stimulation up to 96 h, the cell proliferation of tilapia splenocytes was measured by MTT assay. First, in the experiments without LPS or Con A, the data of the splenocytes proliferation were no significant difference when exposure to hyperosmotic (500 mOsmol/kg) medium. The proliferations of splenocytes pre- exposure to the 200 nM cortisol (in 300 mOsmol/kg) within 4 and 24 h were significantly inhibited. In addition, the proliferations of splenocytes pre-incubation with hyperosmotic added 20 nM cortisol medium within 4 h were significantly suppressed. On the other hand, the experiments with LPS or Con A, the proliferation of splenocytes when exposure to hyperosmotic (500 mOsmol/kg) medium for 1-8 h were significantly increased. Exposure with 20 nM cortisol for 1-4 h, the mitogen- stimulated proliferations of splenocytes were significantly increased while mitogen-stimulated proliferations of splenocytes were significantly increased in pre-incubation with 200 nM cortisol for 4 and 8 h. Moreover, pre-incubation with hyperosmotic added 20 nM cortisol for 1-8 h and with hyperosmotic added 200 nM cortisol within 4 h, the splenocytes proliferations were significantly elevated. This data imply that the profound effects of cortisol on the proliferation of splenocytes might mediate cytokines to enhance the stimulatory action of mitogens.
After exposure to various times of hyperosmotic (25 ppt SW) compared to fish kept in fresh water (FW), an increase significantly in plasma and spleen lysozyme activity were observed. No change was found in lysozyme activity of gill. In head kidney, lysozyme activity of SW was higher than those of FW within 2 h.
Under different salinities, Hsp70 mRNA of spleen was significant higher than that of FW. Hsp90 mRNA expression had no significant difference following directly transfer to SW. Tilapia acute transferred to various salinities (15, 20, 25 and 35 ppt SW) for 2 h, the increased expressions of Hb, IgM, MHC-I and MHC-ⅡmRNA in spleen were significantly correlated with salinity using RT-PCR/southern blotting. These results suggest that transfer to 25 ppt SW is significantly influenced the enhancement expression of spleen immune-related gene in tilapia. Furthermore, tilapia transferred to 25 ppt SW for 1, 2, 4, 8, 16 and 24 h, The results that after transfer to 25 ppt SW for 4 h, Hsp70 mRNA was significantly elevated in tilapia spleen. After transfer to 25 ppt SW for 24 h and long-term acclimation to SW, Hsp90 mRNA of tilapia spleen was significantly higher than that of FW. Furthermore, tilapia transferred to 25 ppt SW for 1, 2, 4, 8, 16 and 24 h, Hb mRNA level of spleen in 1 and 4-24 h of SW transfer tilapia were significantly higher than that of in FW. The peak (2.22 folds) expression of IgM within 2 h of SW transfer tilapia was significantly higher than that of FW acclimated fish, the remainders of time course maintained higher levels. MHC-I and MHC-Ⅱ mRNAs in spleen expressed significantly high with respect to the transfer time. These results suggest that the immune-related genes of tilapia spleen are induced under acute 25 ppt SW transfer.
Total proteins of spleen in tilapia transfer to 25 ppt SW for 4, 8 and 16 h were isolated and applied into 2-D gel electrophoresis with MALDI-TOF MS, ESI-MS/MS or MALDI-TOF/TOF MS to identify the profile and partial sequence of proteins. Compared with FW acclimated fish, 44 spots were differentially expressed: 33 spots belonged to be up-regulated and 11 spots were down-regulated. Two of identified proteins as IGF-Ⅱ and ferrintin middle subunit (FM) were further examined via mRNA expression to confirm the validation of proteomic analysis. The data showed that IGF-Ⅱ mRNA level was significantly increased in the spleen of tilapia after transferred from FW to 25 ppt SW for different time regimen. FM mRNA level in the spleen of tilapia followed SW transfer was associated with the increased levels of IGF-II mRNA. Moreover, Ferrintin light subunit (FL) protein (Western blotting) was significantly higher in the spleen of tilapia transfer to 25 ppt SW for 4 h than that of FW. The experimental data reveal that the evidence of IGF-II and FM mRNA expression provides a high correlate with RT-PCR. These results also suggest that IGF-II and FM may serve as a osmoregulated gene or protein to mediate the adaptation to hyperosmotic environment.
Taken the enhancements of plasma lysozyme activity, splenocyte proliferation, of spleen immune-related genes (IgM, MHC-I and MHC-Ⅱ) expression and of some identified proteins level (FM) altogether, tilapia can regulate the immunological responses and simultaneously enhance the salinity tolerance to adapt consequently the hyperosmotic conditions.
Index I
Content of tables III Content of figures IV
中文摘要 VII
Abstract IX
未來研究方向 XII
Introduction…………………………………………………………1
Osmoregulation………………………………………………………1
Immunomodulatory effects of GH and cortisol……………4
Lysozyme…………………………………………………………5
Heat shock protein 70 and 90 (Hsp70 and Hsp90)……6 Hemoglobin (Hb)……………………………………………7
Immunoglobulin M (IgM)…………………………………………8
Major histocompatibility complex class I and II (MHC-I and MHC-II)……9
Insulin-like growth factor I and II (IGF-I and IGF-II)…………………10
Ferritin………………………………………………………………12
Transferrin (TF)………………………………………………14
Specific aims………………………………………………………15
Experimental design………………………………………………16
Ⅰ. In vitro –MTT assay of tilapia splenocytes………16
Ⅱ. In vivo – measurement of lysozyme activity………17
Ⅲ. In vivo - mRNA expression………………………………18
Ⅳ. In vivo – proteomic analysis…………………………19
Materials and Methods………………………………………………...20
Preparation of fish splenocytes……………………………20
Splenocytes proliferation assay……………………………20
Experimental fish and osmotic stress………………22 Plasma collection…………22
Lysozyme activity………………………………………………22
Total RNA extraction and cDNA synthesis…………………23
PCR conditions…………………………………………………23
Southern blotting analyses…………………………………24
Spleen total protein extraction……………………………25
2-D electrophoresis……………………………………………25
In-gel digestion………………………………………………26
MALDI-TOF MS for protein identification…………………27
ESI-MS/MS of proteins…………………………………………27
SDS–PAGE gel electrophoresis………………………………27
Western blotting………………………………………………28
Statistical analysis…………………………………………28
Results…………………………………………………………………29
Discussion……………………………………………………………36
Conclusions…………………………………………………………46
References……………………………………………………………47
Content of tables
Table 1. List of specific primers used in this study……60
Table 2. Antibodies used in current investigations………61
Table 3. Lysozyme activity in tilapia plasma after the transfer from FW to 25 ppt SW……………………………………………………………………62
Table 4. List of protein identifications by MALDI-TOF MS..63
Table 5. List of protein identifications by MALDI-TOF MS…………………….67
Table 6. List of protein identifications by ESI-MS/MS…………………………..68
Table 7. List of protein identifications by ESI-MS/MS…………………………..69
Table 8. List of protein identifications by MALDI-TOF/TOF MS……………....70
Content of figures
Fig. 1. Effects of hyperosmotic medium (500 mOsmol/kg), cortisol (20 and 200 nM) and combinations of hyperosmotic and cortisol medium pre- incubation for 1, 4, 8 and 24 h on the proliferation of tilapia splenocytes without LPS or Con A stimulated………………………………………….71
Fig. 2. Effects of hyperosmotic (500 mOsmol/kg) pre-incubation for 1 (A), 4 (B), 8 (C) and 24 h (D) with LPS (10, 50 and 100 μg/ml) or Con A (1, 5 and 10 μg/ml)…………………………………………...……………………………72
Fig. 3. Effects of hyperosmotic medium (500 mOsmol/kg) pre-incubation for 1, 4, 8 and 24 h with LPS (10 μg/ml) or Con A (1 μg/ml)………………………74
Fig. 4. Effects of cortisol (20 and 200 nM) pre-incubation for 1 (A), 4 (B), 8 (C) and 24 h (D) with LPS (10, 50 and 100 μg/ml) or Con A (1, 5 and 10 μg/ml)…………………………...……………………………………………75
Fig. 5. Effects of cortisol (20 and 200 nM) pre-incubation for 1, 4, 8 and 24 h with LPS (10 μg/ml) (A) or Con A (1 μg/ml) (B)……………………...………...77
Fig. 6. Effects of hyperosmotic (500 mOsmol/kg) added cortisol (20 and 200 nM) pre-incubation for 1 (A), 4 (B), 8 (C) and 24 h (D) with LPS (10, 50 and 100 μg/ml) or Con A (1, 5 and 10 μg/ml)………………………………...…78
Fig. 7. Effects of osmolarity (500 mOsmol/kg) added cortisol (20 and 200 nM) pre-incubation for 1, 4, 8 and 24 h with LPS (10 μg/ml) (A) or Con A (1 μg/ml) (B)……………………...…………………………………………….80
Fig. 8. Effects of hyperosmotic (500 mOsmol/kg) and cortisol (20 and 200 nM) with LPS (10, 50 and 100 μg/ml) or Con A (1, 5 and 10 μg/ml) direct-incubation for 96 h………………………………...………………...81
Fig. 9. Effects of osmolarity (500 mOsmol/kg) and cortisol (20 and 200 nM) with LPS (50 μg/ml) or Con A (1 μg/ml) direct-incubation for 96 h……...…....83
Fig. 10. Effects of exposure to 25 ppt SW on plasma (A), gill (B), head kidney (pooled sample) (C) and spleen (D) lysozyme activity of tilapia……….84
Fig. 11. Hsp70 (505 bp) (A) and Hsp90 (751 bp) (B) mRNAs expression of spleen in tilapia exposed to different salinities (15, 20, 25 or 35 ppt SW) for 2 h…………………………………………………………………………….86
Fig. 12. Hb (334 bp) (A), IgM (255 bp) (B), MHC-Ⅰ(312 bp) (C) and MHC-Ⅱ(213 bp) (D) mRNAs expression of spleen in tilapia exposed to different salinities (15, 20, 25 or 35 ppt SW) for 2 h…………..………87
Fig. 13. Time-course expressions of Hsp70 (505 bp) (A) and Hsp90 (751 bp) (B) mRNAs abundance in spleen of tilapia exposed to 25 ppt SW………....88
Fig. 14. Time-course expressions of Hb (334 bp) (A) and IgM (255 bp) (B) mRNAs abundance in spleen of tilapia exposed to 25 ppt SW………....89
Fig. 15. Time-course expressions of MHC-Ι (312 bp) (A) and MHC-Ⅱ (213 bp) (B) mRNAs abundance in spleen of tilapia exposed to 25 ppt SW…….90
Fig. 16. Two-dimensional gel analysis of spleen in tilapia transferred from FW to 25 ppt SW for 4, 8 and 16 h………………………………………………91
Fig. 17. Two-dimensional gel analysis of spleen in tilapia transferred from FW to 25 ppt SW for 8 h………………………………………………………….94
Fig. 18. Tissue distributions of insulin-like growth factor II (IGF- II) and IGF-ⅠmRNA in tilapia exposed to 25 ppt SW for 4 h………………………….95
Fig. 19. Expressions of the insulin-like growth factor II (IGF- II) mRNA in the spleen of tilapia transfer to 25 ppt SW at various times……………..…96
Fig. 20. Two-dimensional gel analysis of spleen in tilapia transferred from FW to 25 ppt SW for 8 h………………………………………………………….97
Fig. 21. Two-dimensional gel analysis of spleen in tilapia transferred from FW to 25 ppt SW for 4 h………………………………………………………….98
Fig. 22. The alterations of ferritin middle subunit (FM) protein spot intensity in spleen of tilapia following 25 ppt SW transfer for various times (4, 8 or 16 h)…………………………..……………………………………………99
Fig. 23. Tissue distributions of ferritin middle subunit (FM), ferritin light subunit (FL) and transferrin (TF) mRNA in tilapia exposed to 25 ppt SW for 4 h……………………………………………………………….100
Fig. 24. Expressions of ferritin middle subunit (FM) (A) and ferritin light subunit (FL) (B) mRNA in the spleen of tilapia transfer to 25 ppt SW at various times………………………………………………………………………101
Fig. 25. Ferritin light subunit (FL) protein levels in the spleen of tilapia transfer to 25 ppt SW at various times (4, 8 or 16 h)……………………………102
Albertyn J, Hohmann S, Thevelein JM, Prior BA. 1994. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high- osmolarity glycerol response pathway. Mol Cell Biol 14(6):4135-4144.
Ali A, Krone PH, Pearson DS, Heikkila JJ. 1996. Evaluation of stress-inducible Hsp90 gene expression as a potential molecular biomarker in Xenopus laevis. Cell Stress Chaperones 1(1):62-69.
Ali MA, Akhmedkhanov A, Zeleniuch-Jaquotte A, Toniolo P, Frenkel K, Huang X. 2003. Reliability of serum iron, ferritin, nitrite, and association with risk of renal cancer in women. Cancer Detect Prev 27(2):116-121.
Ayson FG, de Jesus EG, Moriyama S, Hyodo S, Funkenstein B, Gertler A, Kawauchi H. 2002. Differential expression of insulin-like growth factor I and II mRNAs during embryogenesis and early larval development in rabbitfish, Siganus guttatus. Gen Comp Endocrinol 126(2):165-174.
Bachelet M, Mariethoz E, Banzet N, Souil E, Pinot F, Polla CZ, Durand P, Bouchaert I, Polla BS. 1998. Flow cytometry is a rapid and reliable method for evaluating heat shock protein 70 expression in human monocytes. Cell Stress Chaperones 3(3):168-176.
Balm PH, Pepels P, Helfrich S, Hovens ML, Bonga SE. 1994. Adrenocorticotropic hormone in relation to interrenal function during stress in tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 96(3):347-360.
Balm PHM. 1997 Immune-endocrine interactions. Fish Stress and Health in Aquculture:195-221.
Bayne CJ, Gerwick L. 2001. The acute phase response and innate immunity of fish, Dev Comp Immunol 25:725–743.
Bengten E, Clem LW, Miller NW, Warr GW, Wilson M. 2006. Channel catfish immunoglobulins: repertoire and expression. Dev Comp Immunol 30(1-2):77-92.
BingulacPopovic J, Figueroa F, Sato A, Talbot WS, Johnson SL, Gates M, Postlethwait JH, Klein J. 1997. Mapping of MHC class I and class II regions to different linkage groups in the zebrafish, Danio rerio. Immunogenetics 46(2):129-134.
Bjorkman PJ, Parham P. 1990. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 59:253-288.
Blachere NE, Udono H, Janetzki S, Li Z, Heike M, Srivastava PK. 1993. Heat shock protein vaccines against cancer. J Immunother 14(4):352-356.
Borski RJ, Helms LM, Richman NH, 3rd, Grau EG. 1991. Cortisol rapidly reduces prolactin release and cAMP and 45Ca2+ accumulation in the cichlid fish pituitary in vitro. Proc Natl Acad Sci U S A 88(7):2758-2762.
Boyd D, Vecoli C, Belcher DM, Jain SK, Drysdale JW. 1985. Structural and functional relationships of human ferritin H and L chains deduced from cDNA clones. J Biol Chem 260(21):11755-11761.
Caelers A, Berishvili G, Meli ML, Eppler E, Reinecke M. 2004. Establishment of a real-time RT-PCR for the determination of absolute amounts of IGF-I and IGF-II gene expression in liver and extrahepatic sites of the tilapia. Gen Comp Endocrinol 137(2):196-204.
Cairo G, Tacchini L, Pogliaghi G, Anzon E, Tomasi A, Bernelli-Zazzera A. 1995. Induction of ferritin synthesis by oxidative stress. Transcriptional and post-transcriptional regulation by expansion of the "free" iron pool. J Biol Chem 270(2):700-703.
Castillo A, Sanchez C, Dominguez J, Kaattari SL, Villena AJ. 1993. Ontogeny of IgM and IgM-bearing cells in rainbow trout. Dev Comp Immunol 17(5):419-424.
Castillo J, Codina M, Martinez ML, Navarro I, Gutierrez J. 2004. Metabolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout. Am J Physiol Regul Integr Comp Physiol 286(5):R935-941.
Cecchini S, Terova G, Caricato G, Saroglia M. 2000. Lysosome activity in embryos and larvae of sea bass (Dicentrarchus labrax L.), spawned by broodstocks fed with vitamin C enriched diets. Bull Eur Assoc Fish Pathol 20:120-124.
Clark R. 1997. The somatogenic hormones and insulin-like growth factor-1: stimulators of lymphopoiesis and immune function. Endocr Rev 18(2):157-179.
Cohen S. 2002. Strong positive selection and habitat-specific amino acid substitution patterns in MHC from an estuarine fish under intense pollution stress. Mol Biol Evol 19(11):1870-1880.
Connor JR, Benkovic SA. 1992. Iron regulation in the brain: histochemical, biochemical, and molecular considerations. Ann Neurol 32:S51-S61 (Suppl.).
Coulson RM, Cleveland DW. 1993. Ferritin synthesis is controlled by iron-dependent translational derepression and by changes in synthesis/transport of nuclear ferritin RNAs. Proc Natl Acad Sci U S A 90(16):7613-7617.
Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. 1998. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79(2):129-168.
Cuesta A, Laiz-Carrion R, Del Rio MP, Meseguer J, Mancera JM, Esteban MA. 2005. Salinity influences the humoral immune parameters of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 18(3):255-261.
Cutler CP, Cramb G. 2002. Branchial expression of an aquaporin 3 (AQP-3) homologue is downregulated in the European eel (Anguilla Anguilla) following seawater acclimation. J Exp Biol 205(Pt 17):2643-2651.
Dautry-Varsat A, Ciechanover A, Lodish HF. 1983. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci U S A 80(8):2258-2262.
Deane EE, Kelly SP, Luk JC, Woo NY. 2002. Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Mar Biotechnol (NY) 4(2):193-205.
Deane EE, Woo NY. 2004. Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). Am J Physiol Regul Integr Comp Physiol 287(5):R1054-1063.
DeNagel DC, Pierce SK. 1993. Heat shock proteins in immune responses. Crit Rev Immunol 13(1):71-81.
Dickey LF, Sreedharan S, Theil EC, Didsbury JR, Wang YH, Kaufman RE. 1987. Differences in the regulation of messenger RNA for housekeeping and specialized-cell ferritin. A comparison of three distinct ferritin complementary DNAs, the corresponding subunits, and identification of the first processed in amphibia. J Biol Chem 262(16):7901-7907.
Dominguez M, Takemura A, Tsuchiya M. 2005. Effects of changes in environmental factors on the non-specific immune response of Nile tilapia, Oreochromis niloticus L. Aquaculture Research 36(4):391-397.
Edgington SM. 1995. Therapeutic applications of heat shock proteins. Biotechnology (N Y) 13(13):1442-1444.
Ellsaesser CF, Clem LW. 1987. Cortisol-induced hematologic and immunologic changes in channel catfish (Ictalurus punctatus). Comp Biochem Physiol A 87(2):405-408.
Evans DH. 2002. Cell signaling and ion transport across the fish gill epithelium. J Exp Zool 293(3):336-347.
Finnie C, Borch J, Collinge DB. 1999. 14-3-3 proteins: eukaryotic regulatory proteins with many functions. Plant Molecular Biology 40(4):545-554.
Fletcher LM, Halliday JW. 2002. Haemochromatosis: understanding the mechanism of disease and implications for diagnosis and patient management following the recent cloning of novel genes involved in iron metabolism. J Intern Med 251(3):181-192.
Forreiter C, Kirschner M, Nover L. 1997. Stable transformation of an arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo. Plant Cell 9(12):2171-2181.
Foskett JK, Bern HA, Machen TE, Conner M. 1983. Chloride cells and the hormonal control of teleost fish osmoregulation. J Exp Biol 106:255-281.
Foskett JK, Logsdon CD, Turner T, Machen TE, Bern HA. 1981. Differentiation of the chloride extrusion mechanism during seawater adaptation of a teleost fish, the cichlid (Sarotherodon Mossambicus). J Exp Biol 93:209-224.
Fu H, Subramanian RR, Masters SC. 2000. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617-647.
Gabillard JC, Weil C, Rescan PY, Navarro I, Gutierrez J, Le Bail PY. 2003. Effects of environmental temperature on IGF1, IGF2, and IGF type I receptor expression in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 133(2):233-242.
Gething MJ, Sambrook J. 1992. Protein folding in the cell. Nature 355(6355):33-45.
Gierek T, Kokot F, Pilch J, Wiecek A, Paluch J, Franek E. 1995. The concentration of ferritin in blood serum of patients with neoplasms of the larynx and the maxillary-ethmoidal complex. Otolaryngol Pol 49 Suppl 20:81-83.
Gonzalez HO, Roling JA, Baldwin WS, Bain LJ. 2006. Physiological changes and differential gene expression in mummichogs (Fundulus heteroclitus) exposed to arsenic. Aquat Toxicol 77(1):43-52.
Greene MW, Chen TT. 1999. Quantitation of IGF-I, IGF-II, and multiple insulin receptor family member messenger RNAs during embryonic development in rainbow trout. Mol Reprod Dev 54(4):348-361.
Grimholt U, Getahun A, Hermsen T, Stet RJ. 2000. The major histocompatibility class II alpha chain in salmonid fishes. Dev Comp Immunol 24(8):751-763.
Gyomorey K, Yeger H, Ackerley C, Garami E, Bear CE. 2000. Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am J Physiol Cell Physiol 279(6):C1787-1794.
Hansen JD, Strassburger P, Thorgaard GH, Young WP, Du Pasquier L. 1999. Expression, linkage, and polymorphism of MHC-related genes in rainbow trout, Oncorhynchus mykiss. J Immunol 163(2):774-786.
Harris J, Bird DJ. 2000. Modulation of the fish immune system by hormones. Vet Immunol Immunopathol 77(3-4):163-176.
Hentze MW, Muckenthaler MU, Andrews NC. 2004. Balancing acts: molecular control of mammalian iron metabolism. Cell 117(3):285-297.
Hightower LE. 1991. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66(2):191-197.
Hiroi J, McCormick SD, Ohtani-Kaneko R, Kaneko T. 2005. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and CFTR anion channel. J Exp Biol 208(Pt 11):2023-2036.
Holland JW, Gould CR, Jones CS, Noble LR, Secombes CJ. 2003. The expression of immune-regulatory genes in rainbow trout, Oncorhynchus mykiss, during a natural outbreak of proliferative kidney disease (PKD). Parasitology 126 Suppl:S95-102.
Hutchinson TH, Manning MJ. 1996. Seasonal trends in serum lysozyme activity and total protein concentration in dab (Limanda limanda L) sampled from Lyme Bay, UK. Fish Shellfish Immunol 6(7):473-482.
Iwama GK, Thomas PT, Forsyth RHB, Vijayan MM. 1998. Heat shock protein expression in fish. Reviews in Fish Biology and Fisheries 8(1):35-56.
Jacquier-Sarlin MR, Fuller K, Dinh-Xuan AT, Richard MJ, Polla BS. 1994. Protective effects of Hsp70 in inflammation. Experientia 50(11-12):1031-1038.
Karnaky KJ. 1998. Osmotic and ionic regulation. In: Evans DH, editor. The
physiology of fishes: CRC Press. p 157-176.
Kay J, Czop JK. 1994. Enhancement of human monocyte beta-glucan receptors by glucocorticoids. Immunology 81(1):96-102.
Kiang JG, Tsokos GC. 1998. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther 80(2):183-201.
Kitamura K, Kangawa K, Eto T. 2002. Adrenomedullin and PAMP: discovery, structures, and cardiovascular functions. Microsc Res Tech 57(1):3-13.
Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T. 1993. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 192(2):553-560.
Klein J, O'HUigin C. 1995. Class II β MHC motifs in an evolutionary perspective. Immunol Rev 143:89-111.
Koppang EO, Lundin M, Press CM, Ronningen K, Lie O. 1998. Differing levels of MHC class II beta chain expression in a range of tissues from vaccinated and non-vaccinated Atlantic salmon (Salmo salar L.). Fish Shellfish Immunol 8(3):183-196.
Ku NO, Azhar S, Omary MB. 2002. Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation. J Biol Chem 277(13):10775-10782.
Kultz D, Chakravarty D, Adilakshmi T. 2001. A novel 14-3-3 gene is osmoregulated in gill epithelium of the euryhaline teleost Fundulus heteroclitus. Journal of Experimental Biology 204(17):2975-2985.
Kultz D, Fiol DF. 2005. Rapid hyperosmotic coinduction of two tilapia (Oreochromis mossambicus) transcription factors in gill cells. Proc Natl Acad Sci U S A 102(3):927-32.
Kurtz J, Wegner KM, Kalbe M, Reusch TB, Schaschl H, Hasselquist D, Milinski M. 2006. MHC genes and oxidative stress in sticklebacks: an immuno-ecological approach. Proc Biol Sci 273(1592):1407-1414.
Lainchbury JG, Troughton RW, Lewis LK, Yandle TG, Richards AM, Nicholls MG. 2000. Hemodynamic, hormonal, and renal effects of short-term adrenomedullin infusion in healthy volunteers. J Clin Endocrinol Metab 85(3):1016-1020.
Langston AL, Bricknell IR, Ellis AE. 1998. Iron binding capacity of peripheral blood leukocyte lysates from Atlantic salmon (Salmo salar L.). In: A.C. Barnes, G.A. Davidson, M.P. Hiney and D. McIntosh, Editors, Methodology in fish diseases research, Fisheries Research Services, Aberdeen p. 111–116.
Langston AL, Johnstone R, Ellis AE. 2001. The kinetics of the hypoferraemic response and changes in levels of alternative complement activity in diploid and triploid Atlantic salmon, following injection of lipopolysaccharide, Fish Shell Immunol 11:333–345.
Lawson DM, Artymiuk PJ, Yewdall SJ, Smith JM, Livingstone JC, Treffry A, Luzzago A, Levi S, Arosio P, Cesareni G. 1991. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349(6309):541-544.
Le Morvan C, Troutaud D, Deschaux P. 1998. Differential effects of temperature on specific and nonspecific immune defences in fish. J Exp Biol 201(2):165-168.
Lee TH, Feng SH, Lin CH, Hwang YH, Huang CL, Hwang PP. 2003. Ambient salinity modulates the expression of sodium pumps in branchial mitochondria-rich cells of Mozambique tilapia, Oreochromis mossambicus. Zoolog Sci 20(1):29-36.
Lie O, Evensen O, Sorensen A, Froysadal E. 1989. Study on lysozyme activity in some fish species. Dis Aquat Org 6:1-5.
Lim EH, Brenner S. 1999. Short-range linkage relationships, genomic organisation and sequence comparisons of a cluster of five Hsp70 genes in Fugu rubripes. Cell Mol Life Sci 55(4):668-678.
Lin CH, Tsai RS, Lee TH. 2004. Expression and distribution of Na+, K+-ATPase in gill and kidney of the spotted green pufferfish, Tetraodon nigroviridis, in response to salinity challenge. Comp Biochem Physiol A Mol Integr Physiol 138(3):287-295.
Loir M, Le Gac F. 1994. Insulin-like growth factor-I and -II binding and action on DNA synthesis in rainbow trout spermatogonia and spermatocytes. Biol Reprod 51(6):1154-1163.
Lopez J, Cuesta N, Cuttitta F, Martinez A. 1999. Adrenomedullin in nonmammalian vertebrate pancreas: an immunocytochemical study. Gen Comp Endocrinol 115(3):309-322.
Lopez J, Martinez A. 2002. Cell and molecular biology of the multifunctional peptide, adrenomedullin. Int Rev Cytol 221:1-92.
Lund SG, Ruberte MR, Hofmann GE. 2006. Turning up the heat: the effects of thermal acclimation on the kinetics of Hsp70 gene expression in the eurythermal goby, Gillichthys mirabilis. Comp Biochem Physiol A Mol Integr Physiol 143(4):435-446.
MacKenzie S, Iliev D, Liarte C, Koskinen H, Planas JV, Goetz FW, Molsa H, Krasnov A, Tort L. 2006. Transcriptional analysis of LPS-stimulated activation of trout (Oncorhynchus mykiss) monocyte/macrophage cells in primary culture treated with cortisol. Mol Immunol 43(9):1340-1348.
Madsen SS. 1990. The role of cortisol and growth hormone in seawater adaptation and development of hypoosmoregulatory mechanisms in sea trout parr (Salmo trutta trutta). Gen Comp Endocrinol 79(1):1-11.
Madsen SS, Bern HA. 1993. In vitro effects of insulin-like growth factor-I on gill Na+, K+-ATPase in coho salmon, Oncorhynchus kisutch. J Endocrinol 138(1):23-30.
Madsen SS, Larsen BK, Jensen FB. 1996. Effects of freshwater to seawater transfer on osmoregulation, acid base balance and respiration in river migrating whitefish (Coregonus lavaretus). J Comp Physio B-Biochem Syste Enviro Physio 166(2):101-109.
Maestro MA, Mendez E, Parrizas M, Gutierrez J. 1997. Characterization of insulin and insulin-like growth factor-I ovarian receptors during the reproductive cycle of carp (Cyprinus carpio). Biol Reprod 56(5):1126-1132.
Mancera JM, McCormick SD. 1998. Evidence for growth hormone/insulin-like growth factor I axis regulation of seawater acclimation in the euryhaline teleost Fundulus heteroclitus. Gen Comp Endocrinol 111(2):103-112.
Marc AM, Quentel C, Severe A, Bouef G. 1995. Changes in some endocrinological and non-specific immunological parameters during seawater exposure of brown trout. J Fish Biol 18(46):1065-1081.
Marshall WS. 2002. Na+, Cl-, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J Exp Zool 293(3):264-283.
Marshall WS, Bryson SE. 1998. Transport mechanisms of seawater teleost chloride cells: an inclusive model of a multifunctional cell. Comp Biochem Physiol A Mol Integr Physiol 119(1):97-106.
Maule AG, Schreck CB. 1990. Changes in numbers of leukocytes in immune organs of juvenile coho salmon after acute stress or cortisol treatment. J Aquat Anim Health 2(4):298-304.
McCormick SD. 1995. Hormonal control of gill Na+, K+-ATPase and chloride cell function. In: Wood CM, Shuttleworth TJ, editors. Cellular and Molecular Approaches to Fish Ionic Regulation. New York: Academic Press. p 285-315.
McCormick SD. 2001. Endocrine control of osmoregulation in teleost fish. American Zoologist 41(4):781-794.
Mendez E, Smith A, Figueiredo-Garutti ML, Planas JV, Navarro I, Gutierrez J. 2001. Receptors for insulin-like growth factor-I (IGF-I) predominate over insulin receptors in skeletal muscle throughout the life cycle of brown trout, Salmo trutta. Gen Comp Endocrinol 122(2):148-157.
Mistry AC, Honda S, Hirose S. 2001. Structure, properties and enhanced expression of galactose-binding C-type lectins in mucous cells of gills from freshwater Japanese eels (Anguilla japonica). Biochem J 360(1):107-115.
Mommsen TP, Vijayan MM, Moon TW. 1999. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fisheries 9(3):211-268.
Murray BW, Shintani S, Sultmann H, Klein J. 2000. Major histocompatibility complex class II A genes in cichlid fishes: identification, expression, linkage relationships, and haplotype variation. Immunogenetics 51(7):576-586.
Murray C, Fletcher T. 1976. The immunohistochemical localization of lysozyme in plaice (Pleuronectes platessa L.) tissues. J Fish Biol 9:329-334.
Nagae M, Ogawa K, Kawahara A, Yamaguchi M, Nishimura T, Ito F. 2001. Effect of acidification stress on endocrine and immune functions in carp, Cyprinus carpio. Water Air and Soil Pollution 130(1-4):893-898.
Narnaware YK, Baker BI. 1996. Evidence that cortisol may protect against the immediate effects of stress on circulating leukocytes in the trout. Gen Comp Endocrinol 103(3):359-366.
Nathan DF, Vos MH, Lindquist S. 1997. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci U S A 94(24):12949-12956.
Omary MB, Ku NO, Toivola DM. 2002. Keratins: guardians of the liver. Hepatology 35(2):251-257.
Ortuno J, Esteban MA, Meseguer J. 2001. Effects of short-term crowding stress on the gilthead seabream (Sparus aurata L) innate immune response. Fish Shellfish Immunol 11(2):187-197.
Osterloh D, Wittbrodt J, Gerke V. 1998. Characterization and developmentally regulated expression of four annexins in the killifish medaka. DNA Cell Biol 17(10):835-847.
Ozen H, Uygur C, Sahin A, Tekgul S, Ergen A, Remzi D. 1995. Clinical significance of serum ferritin in patients with renal cell carcinoma. Urology 46(4):494-498.
Pan F, Zarate J, Bradley TM. 2002. A homolog of the E3 ubiquitin ligase Rbx1 is induced during hyperosmotic stress of salmon. Am J Physiol Regul Integr Comp Physiol 282(6):R1643-1653.
Parsell DA, Lindquist S. 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437-496.
Pearl LH, Prodromou C. 2000. Structure and in vivo function of Hsp90. Curr Opin Struct Biol 10(1):46-51.
Pelis RM, McCormick SD. 2001. Effects of growth hormone and cortisol on Na+-K+-2Cl- cotransporter localization and abundance in the gills of Atlantic salmon. Gen Comp Endocrinol 124(2):134-143.
Perozich J, Nicholas H, Wang BC, Lindahl R, Hempel J. 1999. Relationships within the aldehyde dehydrogenase extended family. Prot Sci 8(1):137-146.
Pickering AD. 1984. Cortisol-induced lymphocytopenia in brown trout, Salmo trutta L. Gen Comp Endocrinol 53(2):252-259.
Pissios P, Maratos-Flier E. 2003. Melanin-concentrating hormone: from fish skin to skinny mammals. Trends Endocrinol Metab 14(5):243-248.
Pozios KC, Ding J, Degger B, Upton Z, Duan C. 2001. IGFs stimulate zebrafish cell proliferation by activating MAP kinase and PI3-kinase-signaling pathways. Am J Physiol Regul Integr Comp Physiol 280(4):R1230-1239.
Riggs A. 1976. Factors in the evolution of hemoglobin function. Fed Proc 35(10):2115-2118.
Rodrigues PN, Dixon B, Roelofs J, Rombout JH, Egberts E, Pohajdak B, Stet RJ. 1998. Expression and temperature-dependent regulation of the beta2-microglobulin (Cyca-B2m) gene in a cold-blooded vertebrate, the common carp (Cyprinus carpio L.). Dev Immunol 5(4):263-275.
Rotwein P, Thomas MJ, Gronowski AM, Bichell DP, Kikuchi K. 1994. The somatomedin hypothesis revisited: early events in growth hormone actions. In: Baxter RC, Gluckman PD, Rosenfeld RG, editors. The Insulin-Like Growth Factors and their Regulatory Proteins. p 13-33.
Rouault T, Klausner RD, Harford JB. 1996. Translational control. Cold Spring Harbor Laboratory Press:335-362.
Saeij JP, Verburg-van Kemenade LB, van Muiswinkel WB, Wiegertjes GF. 2003. Daily handling stress reduces resistance of carp to Trypanoplasma borreli: in vitro modulatory effects of cortisol on leukocyte function and apoptosis. Dev Comp Immunol 27(3):233-245.
Sakai M, Kobayashi M, Kawauchi H. 1996. Mitogenic effect of growth hormone and prolactin on chum salmon Oncorhynchus keta leukocytes in vitro. Vet Immunol Immunopathol 53(1-2):185-189.
Sakamoto T, McCormick SD. 2006. Prolactin and growth hormone in fish osmoregulation. Gen Comp Endocrinol 147(1):24-30.
Sakamoto T, Shepherd BS, Madsen SS, Nishioka RS, Siharath K, Richman NH, 3rd, Bern HA, Grau EG. 1997. Osmoregulatory actions of growth hormone and prolactin in an advanced teleost. Gen Comp Endocrinol 106(1):95-101.
Sakamoto T, Uchida K, Yokota S. 2001. Regulation of the ion-transporting mitochondrion-rich cell during adaptation of teleost fishes to different salinities. Zoolog Sci 18(9):1163-1174.
Samson WK. 1999. Adrenomedullin and the control of fluid and electrolyte homeostasis. Annu Rev Physiol 61:363-389.
Santambrogio P, Levi S, Cozzi A, Corsi B, Arosio P. 1996. Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. Biochem J 314 (1):139-144.
Sardella BA, Matey V, Cooper J, Gonzalez RJ, Brauner CJ. 2004. Physiological, biochemical and morphological indicators of osmoregulatory stress in 'California' Mozambique tilapia (Oreochromis mossambicus x O. urolepis hornorum) exposed to hypersaline water. J Exp Biol. 207(Pt 8):1399-413.
Sato A, Figueroa F, Murray BW, Malaga-Trillo E, Zaleska-Rutczynska Z, Sultmann H, Toyosawa S, Wedekind C, Steck N, Klein J. 2000. Nonlinkage of major histocompatibility complex class I and class II loci in bony fishes. Immunogenetics 51(2):108-116.
Seidelin M, Madsen SS, Byrialsen A, Kristiansen K. 1999. Effects of insulin-like growth factor-I and cortisol on Na+, K+-ATPase expression in osmoregulatory tissues of brown trout (Salmo trutta). Gen Comp Endocrinol 113(3):331-342.
Shamblott MJ, Cheng CM, Bolt D, Chen TT. 1995. Appearance of insulin-like growth factor mRNA in the liver and pyloric ceca of a teleost in response to exogenous growth hormone. Proc Natl Acad Sci U S A 92(15):6943-6946.
Shan J, Krukoff TL. 2001. Distribution of preproadrenomedullin mRNA in the rat central nervous system and its modulation by physiological stressors. J Comp Neurol 432(1):88-100.
Shepherd BS, Ron B, Burch A, Sparks R, Richman NH, Shimoda SK, Stetson MH, Lim C, Grau EG. 1997. Effects of salinity, dietary level of protein and 17 alpha-methyltestosterone on growth hormone (GH) and prolactin (tPRL(177) and tPRL(188)) levels in the tilapia, Oreochromis mossambicus. Fish Phys Biochem 17(1-6):279-288.
Shrimpton JM, McCormick SD. 1998. Regulation of gill cytosolic corticosteroid receptors in juvenile Atlantic salmon: interaction effects of growth hormone with prolactin and triiodothyronine. Gen Comp Endocrinol 112(2):262-274.
Slater CH, Schreck CB. 1993. Testosterone alters the immune response of chinook salmon, Oncorhynchus tshawytscha. Gen Comp Endocrinol 89(2):291-298.
Smith DCW. 1956. The role of the endocrine organs in the salinity tolerance of trout. Mem Soc Endocrinol 5:83-101.
Smith TR, Tremblay GC, Bradley TM. 1999. Hsp70 and a 54 kDa protein (Osp54) are induced in salmon (Salmo salar) in response to hyperosmotic stress. J Exp Zool 284(3):286-298.
Stafford JL, Belosevic M. 2003. Transferrin and the innate immune response of fish: identification of a novel mechanism of macrophage activation, Dev Comp Immunol 27: 539–554.
Su CY, Chong KY, Owen OE, Dillmann WH, Chang C, Lai CC. 1998. Constitutive and inducible Hsp70s are involved in oxidative resistance evoked by heat shock or ethanol. J Mol Cell Cardiol 30(3):587-598.
Takemura A. 1996. Immunohistochemical localization of lysozyme in the prelarvae of tilapia, Oreochromis mossambicus, Fish Shellfish Immunol 6:75–77.
Takemura A, Takano K. 1995. Lysozyme in the ovary of tilapia (Oreochromis mossambicus): its purification and some biological properties. Fish Phys Biochem 14(5):415-421.
Tipsmark CK, Madsen SS, Seidelin M, Christensen AS, Cutler CP, Cramb G. 2002. Dynamics of Na+, K+, 2Cl- cotransporter and Na+, K+-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). J Exp Zool 293(2):106-118.
Torti SV, Kwak EL, Miller SC, Miller LL, Ringold GM, Myambo KB, Young AP, Torti FM. 1988. The molecular cloning and characterization of murine ferritin heavy chain, a tumor necrosis factor-inducible gene. J Biol Chem 263(25):12638-12644.
Tse MC, Vong QP, Cheng CH, Chan KM. 2002. PCR-cloning and gene expression studies in common carp (Cyprinus carpio) insulin-like growth factor-II. Biochim Biophys Acta 1575(1-3):63-74.
Vasiliou V, Bairoch A, Tipton KF, Nebert DW. 1999. Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics 9(4):421-434.
Verburg-van Kemenade BML, Nowak B, Engelsma MY, Weyts FAA. 1999. Differential effects of cortisol on apoptosis and proliferation of carp B-lymphocytes from head kidney, spleen and blood. Fish Shellfish Immunol 9(5):405-415.
Villegas CT. 1990. Evaluation of the salinity tolerance of Oreochromis mossambicus, Oreochromis niloticus and their F1 hybrids. Aquaculture 85:281-292.
Vong QP, Chan KM, Cheng CH. 2003. Quantification of common carp (Cyprinus carpio) IGF-I and IGF-II mRNA by real-time PCR: differential regulation of expression by GH. J Endocrinol 178(3):513-521.
Wang LG, Liu XM, Wikiel H, Bloch A. 1995. Activation of casein kinase II in ML-1 human myeloblastic leukemia cells requires IGF-1 and transferrin. J Leukoc Biol 57(2):332-334.
Weber GM, Sullivan CV. 2000. Effects of insulin-like growth factor-I on in vitro final oocyte maturation and ovarian steroidogenesis in striped bass, Morone saxatilis. Biol Reprod 63(4):1049-1057.
Wendelaar Bonga SE. 1997. The stress response in fish. Physiol Rev 77(3):591-625.
Weng CF, Chiang CC, Gong HY, Chen MH, Lin CJ, Huang WT, Cheng CY, Hwang PP, Wu JL. 2002. Acute changes in gill Na+, K+-ATPase and creatine kinase in response to salinity changes in the euryhaline teleost, tilapia (Oreochromis mossambicus). Physiol Biochem Zool 75(1):29-36.
Weyts FA, Flik G, Rombout JH, Verburg-van Kemenade BM. 1998a. Cortisol induces apoptosis in activated B cells, not in other lymphoid cells of the common carp, Cyprinus carpio L.. Dev Comp Immunol 22(5-6):551-562.
Weyts FA, Flik G, Verburg-van Kemenade BM. 1998b. Cortisol inhibits apoptosis in carp neutrophilic granulocytes. Dev Comp Immunol 22(5-6):563-572.
Weyts FA, Verburg-van Kemenade BM, Flik G, Lambert JG, Wendelaar Bonga SE. 1997. Conservation of apoptosis as an immune regulatory mechanism: effects of cortisol and cortisone on carp lymphocytes. Brain Behav Immun 11(2):95-105.
Wojtaszek J, Dziewulska-Szwajkowska D, Lozinska-Gabska M, Adamowicz A, Dzugaj A. 2002. Hematological effects of high dose of cortisol on the carp (Cyprinus carpio L.): cortisol effect on the carp blood. Gen Comp Endocrinol 125(2):176-83.
Yada T, Azuma T, Takagi Y. 2001. Stimulation of non-specific immune functions in seawater-acclimated rainbow trout, Oncorhynchus mykiss, with reference to the role of growth hormone. Comp Biochem Physiol B Biochem Mol Biol 129(2-3):695-701.
Yada T, Hirano T, Grau EG. 1994. Changes in plasma levels of the two prolactins and growth hormone during adaptation to different salinities in the euryhaline tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 93(2):214-223.
Yada T, Misumi I, Muto K, Azuma T, Schreck CB. 2004. Effects of prolactin and growth hormone on proliferation and survival of cultured trout leukocytes. Gen Comp Endocrinol 136(2):298-306.
Yada T, Nagae M, Moriyama S, Azuma T. 1999. Effects of prolactin and growth hormone on plasma immunoglobulin M levels of hypophysectomized rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 115(1):46-52.
Yada T, Uchida K, Kajimura S, Azuma T, Hirano T, Grau EG. 2002a. Immunomodulatory effects of prolactin and growth hormone in the tilapia, Oreochromis mossambicus. J Endocrinol 173(3):483-492.
Yamashita M, Ojima N, Sakamoto T. 1996. Molecular cloning and cold-inducible gene expression of ferritin H subunit isoforms in rainbow trout cells. J Biol Chem 271(43):26908-26913.
Young JC, Moarefi I, Hartl FU. 2001. Hsp90: a specialized but essential protein- folding tool. J Cell Biol 154(2):267-273.
Zimek A, Stick R, Weber K. 2003. Genes coding for intermediate filament proteins: common features and unexpected differences in the genomes of humans and the teleost fish Fugu rubripes. J Cell Sci 116(Pt 11):2295-2302.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [12]許協隆、李建輝. “腹版開孔之鋼骨鋼筋混凝土梁反覆載重試驗研究”, 中國土木水利工程學刊, Vol. 14, Iss. 4, pp. 581-590, 2002.
2. [12]許協隆、李建輝. “腹版開孔之鋼骨鋼筋混凝土梁反覆載重試驗研究”, 中國土木水利工程學刊, Vol. 14, Iss. 4, pp. 581-590, 2002.
3. [10]陳正誠、陳建中. “包覆型鋼骨鋼筋混凝土梁之撓曲行特性”, 中國土木水利工程學刊, Vol. 13, Iss. 2, pp. 263-275, 2001.
4. [10]陳正誠、陳建中. “包覆型鋼骨鋼筋混凝土梁之撓曲行特性”, 中國土木水利工程學刊, Vol. 13, Iss. 2, pp. 263-275, 2001.
5. [9]翁正強、江銘鴻、顏聖益. “包覆型SRC梁剪力握裹破壞試驗與力學行為研究”, 中國土木水利工程學刊, Vol. 13, Iss. 3, pp. 555-565, 2001.
6. [9]翁正強、江銘鴻、顏聖益. “包覆型SRC梁剪力握裹破壞試驗與力學行為研究”, 中國土木水利工程學刊, Vol. 13, Iss. 3, pp. 555-565, 2001.
7. [14]翁正強、江銘鴻、陳誠直、林佳宏. “剪力釘對包覆型SRC梁力學行為之影響”, 中國土木水利工程學刊, Vol. 13, Iss. 1, pp. 181-192, 2001.
8. [14]翁正強、江銘鴻、陳誠直、林佳宏. “剪力釘對包覆型SRC梁力學行為之影響”, 中國土木水利工程學刊, Vol. 13, Iss. 1, pp. 181-192, 2001.
9. [24]翁正強、顏聖益、陳誠直、黃明慧. “包覆型鋼骨鋼筋混凝土梁之極限彎矩強度研究”, 中國土木水利工程學刊, Vol. 12, Iss. 3, pp. 521-531, 2000.
10. [24]翁正強、顏聖益、陳誠直、黃明慧. “包覆型鋼骨鋼筋混凝土梁之極限彎矩強度研究”, 中國土木水利工程學刊, Vol. 12, Iss. 3, pp. 521-531, 2000.
11. [25]翁正強、廖慧明、張荻薇、陳誠直、顏聖益. “鋼骨鋼筋混凝土建築之梁柱構造細則研究”, 土木工程技術, Vol. 2, Iss. 4, pp. 1, 1998.
12. [25]翁正強、廖慧明、張荻薇、陳誠直、顏聖益. “鋼骨鋼筋混凝土建築之梁柱構造細則研究”, 土木工程技術, Vol. 2, Iss. 4, pp. 1, 1998.
13. [29]陳正誠、張大鵬、方至楷. “鋼骨鋼筋混凝土短梁之剪力實驗行為”, 中國土木水利工程學刊, Vol. 12 卷 3 期 頁 511, Iss., 2000.
14. [29]陳正誠、張大鵬、方至楷. “鋼骨鋼筋混凝土短梁之剪力實驗行為”, 中國土木水利工程學刊, Vol. 12 卷 3 期 頁 511, Iss., 2000.
15. [31]陳生金、陳昭榮、朱俊星. “半預鑄鋼骨鋼筋混凝土梁柱接頭研究”, 結構工程, Vol. 17, Iss. 1, pp. 3, 2002.