跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐上峰
研究生(外文):Shang-Feng Hsu
論文名稱:電子束蒸鍍斜角法製備多孔性二氧化鈦薄膜做為可見光光觸媒之研究
論文名稱(外文):Glancing Angle Deposited Porous Titanium Oxide Films by Electron-beam Evaporation as Visible Light Photocatalyst
指導教授:翁明壽
指導教授(外文):Ming-Show Wong
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:120
中文關鍵詞:傾斜式沉積多層膜多孔性二氧化鈦光觸媒
外文關鍵詞:Porous titanium oxideGlancing angle depositionPhotocatalystMultilayer
相關次數:
  • 被引用被引用:9
  • 點閱點閱:448
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用斜角沈積法(Glancing angle deposition)與離子輔助電子束蒸鍍系統(Ion-assisted electron-beam evaporation system)製備多孔性二氧化鈦(TiO2)薄膜,並研究其結構、光學與紫外及可見光光觸媒之性質。希望藉此增加薄膜之表面積,進而達到較優異光觸媒之性質表現。蒸鍍源使用99.95% Rutile TiO2,並改變基材角度與氮原子(離子)摻雜,進而改變薄膜之性質。於薄膜製程中維持銳鈦礦(anatase)相,分別改變薄膜之表面型態、厚度、氮含量與多層結構,進而探討其對光觸媒性質之影響。
利用XRD、Raman與TEM分析薄膜結構與組成;SEM與FESEM儀觀察表面型態;UV-Visible分光儀測量薄膜在不同波長之吸收。而光觸媒分析方面,利用紫外及可見光光源進行量測,其中包括:觀察水接觸角(water contact angle)與薄膜親水性質之變化、亞甲基藍(methylene blue)濃度變化與時間關係和銀離子之還原反應(sliver reduction)。
研究結果顯示,無論是TiO2或TiO2-xNx,表面積之增加確實使得其於紫外或可見光下之光觸媒活性更為優異,其多孔性分解亞甲基藍之反應速率常數(k)分別為0.026和0.046 hr-1(緻密型薄膜則分別為0.017和0.029 hr-1);於水接觸角實驗更能發現柱狀薄膜之起始與照光後之角度皆小於緻密型薄膜,甚至攤平於試片表面。而TiO2與TiO2-xNx多層膜方面,其光觸媒之性質較單層摻雜薄膜有更佳的表現。且於可見光下薄膜之結晶性優劣,將為主要影響光催化之活性。從製程條件、分析結果與光觸媒實驗皆能發現多層膜有較少之氮摻雜量,但其光觸媒效率卻有相當良好之表現。當底層為純TiO2時之緻密型與多孔性多層膜,其結晶性、分解亞甲基藍與銀還原性質皆優於底層為摻雜或單層之樣品。
This study discusses the preparation, structure, optical properties and the visible light photocatalytic activity of porous titanium oxide (TiO2) and related films. The films were fabricated by glancing angle deposition (GLAD) with ion-assisted electron-beam evaporation (IBAD) system using rutile TiO2 powder as source material. The study focuses on four different aspects, namely morphology, thickness, nitrogen content and multilayer of TiO2 /TiO2-xNx films.
XRD, Raman and TEM were used to detect the structure and composition of films. SEM and FESEM were used to observe the surface morphology. UV-Visible spectroscopy was used to measure the absorption at different wavelengths. The photocatalytic properties were characterized by the water-contact angle measurement, degradation of methylene-blue (MB) solution and sliver ion reduction.
The results show that the photocatalytic activities of porous TiO2 or TiO2-xNx films were better than those of dense films under both UV and visible light irradiation. The porous TiO2-xNx film has exhibited the lowest water contact angle and showed the best photocatalytic performance for degradation of methylene-blue with a rate-constant (k) about 0.046 hr-1 under visible-light illumination. The photocatalytic activities of dense and porous multilayers were better than those of single-layer film of TiO2-xNx. The crystallinity of the multilayer films was considered to be more dominant factor than the nitrogen concentration to affect the overall photocatalytic properties.
目 錄
中文摘要............................................Ⅰ
Abstract............................................Ⅲ
目錄................................................Ⅴ
表目錄..............................................Ⅷ
圖目錄..............................................Ⅹ

第一章 前言
1.1 概述.............................................1
1.2 研究目的.........................................3

第二章 研究背景
2.1 二氧化鈦光觸媒簡介...............................5
2.1.1 二氧化鈦的物理性質.........................5
2.1.2 二氧化鈦光催化原理.........................8
2.1.3 二氧化鈦光觸媒文獻回顧....................10
2.2 蒸鍍與斜角沉積法簡介............................14
2.2.1 蒸鍍原理..................................14
2.2.2 電子束蒸鍍................................14
2.2.3 斜角度沉積法..............................16
2.3 離子槍簡介......................................18
2.3.1 離子束之能量..............................21
2.3.2 離子束之電流密度..........................22

第三章 實驗方法
3.1 實驗規劃........................................23
3.2 蒸鍍實驗........................................24
3.2.1 實驗系統介紹..............................24
3.2.2 材料準備..................................26
3.2.3 實驗製程..................................27
3.3 分析方法........................................29
3.3.1 X 光繞射儀................................30
3.3.2 拉曼光譜儀................................31
3.3.3 穿透式電子顯微鏡..........................32
3.3.4 表面粗度儀................................32
3.3.5 掃描式電子顯微鏡..........................33
3.3.6 紫外光-可見光光譜儀.......................34
3.3.7 光源......................................35
3.3.8 光觸媒水接觸角分析實驗....................37
3.3.9 光觸媒分解亞甲基藍之實驗..................38
3.3.10 光觸媒銀還原之實驗.......................41

第四章 結果與討論
4.1 多孔性TiO2薄膜製備與研究........................43
4.1.1 基材角度的影響............................43
4.1.2 薄膜厚度的影響............................57
4.2 多孔性TiO2-xNx薄膜製備與研究....................68
4.2.1 不同氮流量的影響..........................68
4.3 TiO2 / TiO2-xNx多層緻密與多孔性薄膜製備與研究...78
4.3.1 緻密多層膜不同接觸面之影響................78
4.3.2 週期與接觸面改變之影響....................86

第五章 結論
5.1 結論............................................95

參考文獻............................................98
參考資料:
[1] A. Fujishima and K. Honda, Nature 238 (1972) 37.
[2] R. Wang, K. Hashimoto, A. Fujwashima, Nature, 388
(1997) 431.
[3] Y. Ohko, T. Tatsuma, T. Fuzii, K. Naoi, C. Niwa, Y.
Kubota, A. Fujwashima,Nature Mat. 2 (2002) 29.
[4] G.P. Burn, J. Appl. Phys. 65 (1989) 2095.
[5] M. Kaneko, I. Okura, eds., Photocatalysis, Springer
Verlag, 2003.
[6] A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem.
Photobiol. C: Photochem. Rev.1 (2000) 1.
[7] O. Khaselev, J. A. Turner, Science 280 (1998) 425.
[8] Kawaguchi, H. EnViron. Technol. Lett. 5 (1984) 471.
[9] Okamoto, K. Yamamoto, Y. Tanaka, H. Tanaka, M. Itaya,
A. Bull, Chem. Soc. Jpn.58 (1985) 2015.
[10] Augugliaro, V. Palmisano, L. Sclafani, A. Minero, C.
Pelizzetti, E. Toxicol.EnViron. Chem. 16 (1988) 89.
[11] Matthews, R. W., J. Catal. 97 (1986) 56.
[12] A. Sclafani, L. Palmisano, M. Schiavello, J. Phys.
Chem. 94 (1990) 892.
[13] A. Sclafani, J. M. Herrmann, J. Phys. Chem. 100 (1996)
13655.
[14] H. Tang, H. Berger, P. E. Schmid, F. Levy, G. Burri,
Solid State Commun. 87 (1993) 847.
[15] H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Levy,
J. Appl. Phys. 75 (1994) 2042.
[16] Kawai T, Sakata T., Nature 286 (1980) 474.
[17] Rosenberg I, Brock, Heller AJ., Phys Chem 96 (1992)
3523.
[18] S. Yin, Q.W. Zhang, F. Saito, T. Sato, Chem. Lett. 32
(2003) 358.
[19] B. O’Regan, M. Gratzel, Nature 353 (1991) 737.
[20] W. Choi, A. Termin, M. R. Hoffmann, J. Phys. Chem. 98
(1994) 13669.
[21] Y. Sakata, T. Yamamoto, T. Okazaki, H. Imamura, S.
Tsuchiya, Chem. Lett. 12 (1998) 1253.
[22] M. Iwasaki, M. Hara, H. Kawada, H. Tada, S. Ito, J.
Colloid Interface Sci. 224 (2000) 202.
[23] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga,
Science 293 (2001) 269.
[24] S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Jr.,
Science 297 (2002) 2243.
[25] T. Ohno, T. Tsubota, K. Nishijima, Z. Miyamoto, Chem.
Lett. 33 (2004) 750.
[26] K. Robbie, M. J. Brett, A. Lakhtakia, J. Vac. Sci.
Technol. A, 13 (1995) 2991.
[27] K. Robbie, M. J. Brett, A. Lakhtakia, Nature, 384
(1996) 616.
[28] K. Robbie and M. J. Brett, U.S. Patent No. 5,866,204
(2 February 1999); U.S. Patent No. 6,206,065 (27 March
2001); U.S. Patent No. 6,248,422 (19 June,2001).
[29] 楊敏麒, 離子輔助蒸鍍製備氮和碳摻雜之二氧化鈦薄膜做為可
見光光觸媒的研究, [台灣, 國立東華大學材料科學與工程研究
所碩士論文 (2004)].
[30] Phase Diagrams for Ceramists Figure, The American
Ceramic Society, Inc. 76(1975) 4150.
[31] A. L. Linsebigler, G. Q. Lu, J. T. Yates, Chem. Rev.
95 (1995) 735-758.
[32] Mineral Structure and Property Data / TiO2 Group,
University of Colorado,
http://ruby.colorado.edu/~smyth/min/tio2.html.
[33] 高濂, 鄭珊, 張青紅, 奈米光觸媒, [台灣, 五南圖書股份有限
公司 (2004)].
[34] M. R. Hoffmann, S. T. Martin, W. Choi, D. W.
Bahnemann, Chem. Rev. 95(1995) 69-96.
[35] K. E. Karakitsou, X. E. Verykios, J. Phys. Chem. 97
(1993) 1184.
[36] M. Suzuki, T. Lto, Y. Taga, Appl. Phys. Lett. 78
(2001) 25.
[37] A. Heller, Acc, Chem. Res. 14 (1981) 154.99
[38] R. W. Mattews, J. Phys. Chem. 91 (1987) 3328.
[39] M. R. Prairie, L. R. Evans, B. M. Stange, S. L.
Martinez, Environ. Sci. Technol.27 (1993) 1776.
[40] M. I. Litter, Appl. Catal. B Environ. 23 (1999) 89.
[41] K. Wilke, H. D. Breuer, J. Photochem. Photobiol. A:
Chem. 121 (1999) 49.
[42] I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S.
Sugihara, K. Takeuchi, J. Mol. Catal. A Chem. 161
(2000) 205-212.
[43] J. Y. Lee, J. Park, J. H. Cho, Appl. Phys. Lett. 87
(2005) 011904.
[44] G. K. Kiema, M. J. Colgan, M. J. Brett, Sol. Energ.
Mat. Sol. C. 85 (2005) 321-331.
[45] 莊達人, VLSI製造技術, [台灣, 高立圖書有限公司 (1998)].
[46] K. Robbie, M. J. Brett, J. Vac. Sci. Technol. A, 15
(1997) 1460.
[47] K. Robbie, Glancing angle deposition, Materials
Physics, Queens’ University,
http://phy-server.phy.queensu.ca/~robbie/glad.html.
[48] K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams,
C. Buzea, Rev. Sci. Instrum. 75 (2004) 4.
[49] T. Motohiro, Y. Taga, Appl. Opt. 28 (1989) 2466.
[50] K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, M. J.
Breet, J. Vac. Sci. Technol. A, 13 (1995) 1032.
[51] Guide to operations for the 3cm ion source, Veeco /
Commonwealth Sciectific.
[52] C.E. Rice, Appl. Phys. Lett. 35 (1979) 563.
[53] 許樹恩, 吳伯泰, X光繞射原理與材料結構分析, [台灣, 民全
書局 (1996)].
[54] 徐清彬, 二氧化鈦薄膜的性質和結構分析與其光觸媒行為, [台
灣, 國立東華大學材料工程研究所碩士論文 (2003)].
[55] P. Bhattacharya, Semiconductor Optoelectronic devices,
[Taiwan, PearsonEducation Taiwan (2004)].100
[56] T. Sekiya, K. Ichimura, M. Igarashi, S. Kurita, J.
Phys. Chem. Solids, 61 (2000) 1237.
[57] D. Li, H. Haneda, N. K. Labhsetwar, S. Hishita, N.
Ohashi, Chem. Phys Lett. 401(2005) 579-584.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊