(3.236.228.250) 您好!臺灣時間:2021/04/17 14:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張宏裕
研究生(外文):Hong-Yu Chang
論文名稱:波長多工色散補償光固子系統之研究
論文名稱(外文):The Study of WDM Dispersion Compensated Soliton System
指導教授:董正成
指導教授(外文):Jeng-Cherng Dung
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:62
中文關鍵詞:光固子色散斜率補償器
外文關鍵詞:solitonDSC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
我們運用已規畫過的色散補償架構補償光固子,以數值模擬的方式,在單通道與全通道的傳輸系統中觀察光固子的傳輸特性。
在傳輸系統中,我們設定平均路徑的 為負的一個值,以達到形成光固子的條件,同時計算出通道中色散補償光纖的長度,並且對不同通道,以方均根的計算方式找出最佳的輸入訊號,讓傳輸中的訊號在系統裡的穩定度會更好。
為了減少雜訊與雜訊所引起的時脈抖動,在每個放大器後面內嵌一個Fabry-port濾波器,我們比較濾波器的頻寬與濾波器削減訊號能量的能量補償率,當頻寬為10倍頻與能量補償率為0.7倍時,對系統的傳輸效率是最好的。
最後,我們觀察全通道傳輸系統中脈波的變化,並比較單一通道的傳輸效率。四個10Gbit/s的單一通道傳輸系統,在位元錯誤率為10-9時可以傳輸到19000~24000公里,而全通道的傳輸系統運行時,通道中最短的傳輸距離可以達到13500公里。
We take advantage of scheme dispersion compensated to compensating the optical soliton. The transmission properties of the optical soliton were observed by using method of numerical simulation in signal and full channel transmission system.
In the transmission system, we made path-average dispersion that β2 is negative value and to achieve the condition for the optical soliton. The length of dispersion compensation was calculated with the channel at the same time. Furthermore, the optimum input signal lead to traveling signal is better for stable level of system and it can found with method for calculation of root-mean-square in different channel.
For reduce ASE and noise-induced timing jitter, an in-line Fabry-port filter is inserted after every amplifier. We compared with filter bandwidth and power compensation rate for filter sharply reduce power of signal. The transmission performance is best When the filter bandwidth is 10 times and power compensation rate is 0.7 times.
Finally, we observed variations of pulse width that full channel working and compared with single channel transmission performance in transmission. In the bit error rate is 10-9, the transmission distance arrive at between 19000 and 24000 km that the 10 Gbit/s for four single channel transmission system. The full channel transmission system working that the shortest transmission distance can arrive at 13500 km in all channel.
第一章 簡介
1-1 研究背景
1-2 研究動機

第二章 理論背景
2-1 光纖傳播波動方程式
2-2 光纖線性色散
2-3 光纖非線性色散
2-3.1 自相位調變及交互相位調變
2-3.2 四波混合及調變不穩定性
2-4 光固子
2-4.1光固子原理
2-4.2 Fundamental Soliton
2-5 光固子傳輸限制
2-5.1 光固子的特性
2-5.2 損耗
2-5.3 Gordon-Haus Effect

第三章 傳輸系統架構
3-1 光發射器
3-2 傳輸光纖
3-3 光放大器
3-4 光固子補償之架設
3-4.1 色散補償
3-4.1.1 色散的限制
3-4.1.2 週期性的色散圖
3-4.2 色散斜率補償
3-4.2.1 WDM傳輸系統的色散補償
3-4.2.2 色散斜率補償器
3-4.3 色散補償之參數設定

第四章 結果與討論
4-1 單通道傳輸模擬
4-1.1 訊號的穩定度
4-1.2 功率提昇因子
4-2 濾波器
4-2.1 頻寬與能量補償
4-2.2 多通道的濾波器
4-3 全通道傳輸之模擬
4-4 結論
[1] A.Hasegawa and F. Tappert, Transmission of stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers,Appl.Phys.Lett.,1973
[2] G. P. Agrawal, Nonlinear Fiber Optics, Third Edition. (Academic Press) 2001.
[3] M. J. Potasek and G. P. Agrawal, ” Power-depedent enhancement in repeater transmission experiment employing a modifield prechirp technique,” OFC’91, San Diego, CA, 1991, Paper TuO2, pp. 54.
[4] N. Henmi, T. Saito, and T. Ishida,” Prechirp technique as a linear dispersion compensation for ultrahigh-speed long-span intensity modulation direct detection optical communication system,” IEEE J. Lightwave Technol., vol. 12, pp. 1706, 1994.
[5] M. J. Potasek and G. P. Agrawal, ” Power-depedent enhancement in repeater spacing for dispersion-limited optical communication systems, ” Electron. Lett., vol. 22, pp. 759, 1986.
[6] D. Marcuse, A. R. Chraplyvy, and R.W. Tkach, ” Effect of fiber non-linearity on long-distance transmission, ” IEEE J. Lightwave Technol., vol. 9, pp. 356, 1991.
[7] D. Marcuse, ” Bit-error rate of lightwave systems at the zero dispersion wave-length, ” IEEE J. Lightwave Technol., vol. 9, pp. 1330, 1991.
[8] K. Sekine, N. Kikuchi, S. Sasaki, and M. Aoki, ”10Gbit/s four-channel WDM transmission experiment over 500km with technique for suppressing four-wave mixing, ” Electron. Lett., vol. 30, pp. 1150, 1994.
[9] D. Anderson and M. Lisak, ” Modulation instability of coherent optical transmission signals, ” Opt. Lett., vol.9, pp. 468, 1984.
[10] Y.Kodama and A. Hasegawa, Opt.Lett., 1982;Opt.Lett., 1983
[11] E. Desurvire,” The golden age of optical fiber amplifier,”Physics Today, vol.47, No. 1, 1994.
[12] C. R. Giles and E. Desurvire, ” Modeling erbium-doped fiber amplifiers, ” IEEE J. Lightwave Technol., vol. 9, pp. 271, 1991.
[13] P.C.Becker et al., “Erbium-Doped Fiber Amplifiers Fundamentals and Technology”, Academic Press, 1999
[14] N. Henmi, T. Saito, and T. Ishida,” Prechirp technique as a linear dispersion compensation for ultrahigh-speed long- span intensity modulation direct detection optical communication system,” IEEE J. Lightwave Technol., vol. 12, pp. 1706, 1994.
[15] C.Lin, H. Kogeknik, and L. Cohen,” Optical pulse equalization and low-dispersiontransmission in single-mode fiber in the 1.3- 1.7mm spectral region,” Opt. Lett., vol. 5, pp. 476, 1980.
[16] J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran,” Fiber dispersion compensation using a chirped in-fiber Bragg grating,” Electron. Lett., vol. 30, pp. 985, 1994.
[17] S. Watanabe, T. Naito, and T. Chikama,” Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation,” IEEE Photon. Technol. Lett., vol. 5, pp. 92, 1993.
[18] R. A. Fisher, B. R. Suydam, and D. Yevick,” Optical phase conjugation for timedomain undoing of dispersive self phase modu -lation effects,” Opt. Lett., vol. 8, pp. 611, 1983.
[19] P. Nouchi, P. Sansonetti, S. Landais, S. Borne, G. Borre’, C. Brechm Y Boniort, B. Perrin, J. J. Girard, and J. Auge’, ” Low loss dispersion-shifted single-mode fiber with high nonlinear effective area,” OFC’95., San Diego, CA, 1995, Paper ThH2.
[20] I.Morita, K. Tanaka, N. Edagawa, and M. Suzuki, 40Gb/s Single-channel Soliton Transmission Over Transoceanic Distances by Reducing Gordon-Haus Timing Jitter and Soliton-Soliton Interaction, Lightwave Technol., 1999
[21] I.Morita, M.Suzuki, N. Edagawa, K. Tanaka, and S. Yamamoto, Long-Haul Soliton WDM Transmission with Periodic Dispersion Compensation and Dispersion Slope Compensation, Lightwave Technol. ,1999
[22] M. Suzuki, I. Morita, N. Edagawa, S.Yamamoto, and S. Akiba, 20 Gbit/s-based soliton WDM transmission over transoceanic distances using periodic compensation of dispersion and its slope, electron. lett., 1997
[23] J.F.L. Devaney, W. Forysiak, N.J. Smith, and N. J. Doran, Modelling WDM Soliton Transmission in Dispersion-Managed Systems. ,1997
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔