跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 10:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳淑娟
研究生(外文):Shu-Chuan Wu
論文名稱:搜尋接駁轉運系統之最佳(s,S)存貨政策
論文名稱(外文):Searching the Optimal (s, S) Inventory Policy of a Cross-Docking System
指導教授:溫日華溫日華引用關係張宗勝張宗勝引用關係
指導教授(外文):Yat-Wah WanTsung-Sheng Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:全球運籌管理研究所
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:71
中文關鍵詞:規模經濟存貨政策接駁轉運營運系統
外文關鍵詞:Economies of scaleInventory policyCross-docking operating system
相關次數:
  • 被引用被引用:6
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:1
為滿足顧客需求,一般企業在面對市場需求快速變化時,通常以存貨減低需求不確定所導致的缺貨問題。以製造業為例,其存貨總值通常佔總資產的百分之二十至六十。因此為提高市場競爭力,如何在滿足一定服務水準下,有效降低存貨,為每一企業所必須面對的重要挑戰。傳統存貨管理主要以倉儲營運系統(warehousing operating system)管控存貨量,但自Wal-Mart成功利用接駁轉運營運系統(cross-docking operating system)來降低存貨成本後,愈來愈多產業已改採此新系統。然而有效率地運作此系統並非易事。因此,假設整個營運系統由中央集中控管,本研究主要探討其存貨及輸配送管理營運策略。亦即,中央管理者如何制定各零售商之最佳(s, S)存貨政策,以滿足預設的服務水準、降低存貨量、發揮運輸規模經濟效益,進而最小化整個接駁轉運系統之總成本。由於制定一供給網路的營運策略是公認的難題,且無法以解析式方法求解。因此,本研究以系統模擬技術求解,並提出一套有效率的求解程序。
To satisfy customers under rapidly changing demands, companies usually keep inventory to reduce the stock-out problem induced by the uncertainty of demands. For example, in the manufacturing sector, inventory often takes up 20% to 60% of the total asset. To sharpen competitiveness, reducing inventory but maintaining a given service level is an important challenge faced by every company. Traditionally, warehousing operating systems are used to control inventory. Ever since Wal-Mart successfully reduces the inventory cost by the cross-docking operating system, more and more companies have adopted this system. However, it is difficult to operate a cross-docking operating system efficiently. Assuming that such a system is under centralized control, this research studies its inventory and distribution policy: A central planner sets the best (s, S) inventory policy that reduces inventory; the policy minimizes the total cost of the system, under economies of scale in transportation, subject to a pre-specified service level. Such a network distribution problem is known to be hard and without analytical solution. Thus, this study solves the problem by proposing an efficient simulation-based solution procedure.
摘 要 I
Abstract II
致 謝 III
圖 目 錄 V
表 目 錄 VI
一、 緒 論 1
二、 研究問題與基本假設 4
三、 模型建構 6
四、 模式求解 18
4.1 一對一網路 20
4.2 多對多網路 31
五、 績效敏感度分析 39
六、 結論與建議 43
參考文獻 45
附錄一 順序統計量的期望值 47
附錄二 八種情境之模擬結果 48
1.Arnold, J.R. T. and Chapman, S. N (2003). Introduction to Materials Management 5th edition.
2.Bartholdi III, J.J., and Gue K.R. (2000), “Reducing labor costs in an LTL crossdocking terminal,” Operations Research, Vol.48, p.823-32.
3.Bartholdi III, J.J., and Gue K.R. (2004), “The best shape for a crossdock,” Transportation Science, Vol.38, p.235-244.
4.Bashyam, S. and Fu, M.C.(1998), “Optimization of (s, S) inventory system with random lead times and a service level constraint”, Management Science, Vol.44, p.S243-256.
5.Bookbinder, J.H., and Tan, J.Y. (1988), “Strategies for the probabilistic lot-sizing problem with service-level constraints,” Management Science, Vol.34, p.1096-1108.
6.Chen, F.Y., and Krass, D. (2001), ”Inventory models with minimal service level constraints,” European Journal of Operational Research, Vol.134 , p.120-140.
7.Chen, P., Guo, Y., Lim, A. and Rodrigues, B.(2006), “Multiple crossdocks with inventory and time windows”, Computers and Operations Research, Vol. 33, p.43-63.
8.Donaldson, H., Johnson, E.L., Ratliff, H.D. and Zhang, M.(1999a), “Schedule-driven cross-docking networks”, GA Tech Report 99-04.
9.Donaldson, H., Johnson, E.L., Ratliff, H.D. and Zhang, M.(1999b), “Load-driven cross-docking networks”, GA Tech Report.
10.Federgruen, A. and Zipkin, P.(1984), “Approximations of dynamic, multilocation production and inventory problems”, Management Science, Vol. 30, p.69-84.
11.Freeland, J., and Porteus, E. (1980), “Evaluating the effectiveness of a new method for computing approximately optimal (s, S) inventory policy,” Operations Research, Vol.28, p.353-364.
12.Heskett, J.L., Sasser, W.E.,Jr. and Hart, C.W.(1989),Service Breakthrough, New Yourk: The free press.
13.Hoadey, H. and Heyman, D.P, (1997)“A two-echelon inventory model with purchases dispositions shipments, returns and transshipments”, Naval Research Logistics. Quart. , 24, pp.1-19.
14.Kapalka, B.A., Katircioglu, K., and Puterman, M.L. (1999), “Retail inventory control with loss sales, service constraints, and fractional lead times,” Production and Operations Management, Vol. 8, p.393-408.
15.Kelton, W.D., Sadowski, R.P., Sturrock, D.T.,Simulation with Arena 3rd, Mc Graw Hill, 2003.
16.Porteus, E.L. (1985), “Numerical comparisons of inventory policies for periodic review systems,” Operations Research, Vol.33, p.904-924.
17.Schneider, H. and Ringuest, J.L.(1990), “Power approximation for computing (s, S) polices using service level”, Management Science, Vol. 36, p822-834.
18. Stalk, G., Evans, P., and Shulman, L. E.(1992),”Competing on capabilities: The new rules of corporate strategy”, Harvard Business Review, Vol.70 Issue 2, p57-69.
19.Sung, C. and Song, S.(2003), “Integrated service network design for a cross-docking supply chain network”, Journal of the Operational Research Society, Vol. 54, p.1283-1295.
20.Tijms, H., and Groenevelt, H. (1984), “Simple approximations for the reorder point in periodic and continuous review (s, S) inventory systems with service level constrains,” European Journal of Operations Research, Vol.17, p.175-190.
21.www.ioma.com, Inventory management report, 2004/04.
22.丁慶榮、翁偉倫(2003),「接駁轉運中心車輛排程之研究」, Journal of Chinese Institute of Industrial Engineers, Vol. 20, p.636-650.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top