參考文獻
Abu-Hanna, A. and P. J. Lucas (2001). Prognostic models in medicine. AI and statistical approaches. Methods Inf Med 40(1): 1-5.
Burke, H. B. and D. E. Henson (1993). The American Joint Committee on Cancer. Criteria for prognostic factors and for an enhanced prognostic system. Cancer 72(10): 3131-5.
Chan, J. K., V. Loizzi, et al. (2003). Prognostic factors in neuroendocrine small cell cervical carcinoma: a multivariate analysis. Cancer 97(3): 568-74.
Cios, K. J. and G. W. Moore (2002). Uniqueness of medical data mining. Artif Intell Med 26(1-2): 1-24.
Concato, J. (2001). Challenges in prognostic analysis. Cancer 91(8 Suppl): 1607-14.
Coppini, D. V., P. A. Bowtell, et al. (2000). Showing neuropathy is related to increased mortality in diabetic patients - a survival analysis using an accelerated failure time model. J Clin Epidemiol 53(5): 519-23.
Davy, M. L., T. J. Dodd, et al. (2003). Cervical cancer: effect of glandular cell type on prognosis, treatment, and survival. Obstet Gynecol 101(1): 38-45.
Delen, D., G. Walker, et al. (2005). Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 34(2): 113-27.
Dreiseitl, S. and L. Ohno-Machado (2002). Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 35(5-6): 352-9.
Drew, P.J.; Magee, P.; et al. (1998). Neural networks improve the prediction of survival in breast cancer. European Journal of Cancer 34(5 Suppl): S100.
Ennett, C. M., M. Frize, et al. (2004). Improvement and automation of artificial neural networks to estimate medical outcomes. Med Eng Phys 26(4): 321-8.
Fayyad, U. M., G. S. Piatetsky, et al. (1996). The KDD process for extracting useful knowledge from volumes of data. Commun ACM 39(11): 27-34.
Fazeny-Dorner, B., C. Wenzel, et al. (2003). Survival and prognostic factors of patients with unresectable glioblastoma multiforme.Anticancer Drugs 14(4): 305-12.
Fish, K.E., J.H. Barnes, et al. (1995). Artificial Neural Network: A New Methodology for Industrial Market Segmentation. Industrial Marketing Management 24: 431-8.
Grieco, A., M. Pompili, et al. (2005). Prognostic factors for survival in patients with early-intermediate hepatocellular carcinoma undergoing non-surgical therapy: comparison of Okuda, CLIP, and BCLC staging systems in a single Italian centre. Gut 54(3): 411-8.
Han, J. & Kamber, M.(2001). Data mining:concept and techniques. San Francisco: Morgan Kaufmann Publishers.
Hankey, B. F., L. A. Ries, et al. (1999). The surveillance, epidemiology, and end results program: a national resource. Cancer Epidemiol Biomarkers Prev 8(12): 1117-21.
Khan, J., J. S. Wei, et al. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7(6): 673-9.
Kleinbaum, D. G., Kupper, L. L., Muller, K. E., Nizam A.(1998). Applied Regression Analysis and Multivariable Methods 3rd Edition. ISBN:0534209106.
Kosary, C. L. (1994). FIGO stage, histology, histologic grade, age and race as prognostic factors in determining survival for cancers of the female gynecological system: an analysis of 1973-87 SEER cases of cancers of the endometrium, cervix, ovary, vulva, and vagina. Semin Surg Oncol 10(1): 31-46.
Lavrac, N. (1999). Selected techniques for data mining in medicine. Artif Intell Med 16(1): 3-23.
Lucas, P. J. and A. Abu-Hanna (1999). Prognostic methods in medicine. Artif Intell Med 15(2): 105-19.
Lundin, M., J. Lundin, et al. (1999). Artificial neural networks applied to survival prediction in breast cancer. Oncology 57(4): 281-6.
Madeira, I., B. Terris, et al. (1998). Prognostic factors in patients with endocrine tumours of the duodenopancreatic area. Gut 43(3): 422-7.
Ohno-Machado, L. (2001). Modeling medical prognosis: survival analysis techniques. J Biomed Inform 34(6): 428-39.
Ottenbacher, K. J., P. M. Smith, et al. (2001). Comparison of logistic regression and neural networks to predict rehospitalization in patients with stroke. J Clin Epidemiol 54(11): 1159-65.
Pisansky, T. M., M. J. Kahn, et al. (1997). An enhanced prognostic system for clinically localized carcinoma of the prostate. Cancer 79(11): 2154-61.
Quinlan J. C4.5: programs for machine learning. San Mateo,
CA: Morgan Kaufmann; 1993.
Richards, G., V. J. Rayward-Smith, et al. (2001). Data mining for indicators of early mortality in a database of clinical records. Artif Intell Med 22(3): 215-31.
Roohan, P. J., N. A. Bickell, et al. (1998). Hospital volume differences and five-year survival from breast cancer." Am J Public Health 88(3): 454-7.
Sargent, D. J. (2001). Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer, 91(8 Suppl), 1636-1642.
Terrin, N., Schmid, C. H., Griffith, J. L., D'Agostino, R. B., & Selker, H. P. (2003). External validity of predictive models: a comparison of logistic regression, classification trees, and neural networks. J Clin Epidemiol, 56(8), 721-729.
van de Vijver, M. J., Y. D. He, et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25): 1999-2009.
Xu, Y., F. M. Selaru, et al. (2002). Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett's esophagus and esophageal cancer. Cancer Res 62(12): 3493-7.
美國癌症協會(2006)。http://www.cancer.org
行政院衛生署(2006a)。癌症登記年報。http://crs.cph.ntu.edu.tw/crs_c/annual.html
行政院衛生署(2006b)。全國衛生統計資訊網,台灣地區死因統計資料。http://www.doh.gov.tw/statistic/data/死因摘要/93年/93.htm
http://sars.nhri.org.tw/publish/breastcancer.php,國家衛生研究院出版品,乳癌診斷與治療共識。
http://www.seer.cancer.gov,Surveillance, Epidemiology, and End Results (SEER) program public-use data,Diagnosis period 1973—2000, Registries 1—9.
http://www.bcdecker.com/SampleOfChapter/1550092626.pdf. Ann Thor. Advances in therapy: prognostic factors in breast cancer.
Susan M. Love, Karen Lindsay.(2002)。乳房聖經。天下雜誌出版社,譯自Dr. Susan Love’s Breast Book(ISBN:0-7382-0235-5)。
周鴻烈(2001)。以貝氏網路為基礎建構臨床路徑之研究。南華大學資訊管理研究所碩士論文。高仲仁(2001)。運用類神經網路進行隧道岩體分類。中央大學應用地質研究所碩士論文。李博智(2002)。資料探勘在慢性病預測模式之建構。元智大學資訊管理學研究所碩士論文。陳玉豐(2003)。資料挖掘在實證醫學上之研究-以闌尾切除、疝氣、糖尿病、胃出血為例。中國醫藥學院醫務管理學研究所碩士論文。江志宏(2003)。運用基因演算法建構疾病預測模型之研究-以尿路結石疾病預測為例。臺灣大學商學研究所博士論文。
陳啟元(2003)。資料探勘技術於健保資料之應用-以醫院門診服務點數預測為例。中正大學資訊管理研究所碩士論文。李文瑞(2004)。運用基因演算法建構疾病早期診斷模型之研究-以糖尿病前期之診斷為例。輔仁大學資訊管理學研究所碩士論文。周歆凱(2004)。利用『資料探勘技術』探討急診高資源耗用者之特性。台灣大學醫療機構管理研究所碩士論文。葉怡成(2004)。類神經網路模式應用與實作。儒林圖書出版。
李博智、邱昭彰、邱文科、劉祖華、莊逸洲、黃崇哲、許光宏, “三維人體測值及資料探勘技術在高血脂症預測模型之應用(Three-dimension anthropometrics and Data Mining Approaches to Predict Hyperlipidemia),”台灣醫療管理科學學會研討會(SHMS 2002) October 4, 2002 (accepted).
謝弘一(2005)。運用支援向量機於資料探勘乳癌病患存活能力分類模式之建構。輔仁大學管理學研究所碩士論文。