跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 06:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉俊宏
研究生(外文):Jyung-Hurng Liu
論文名稱:(一)大腸桿菌引子合成體蛋白PriB的晶體結構分析(二)醣神經胺醇脂促進眼鏡蛇心臟毒素A3穿透細胞膜的結構機制研究
論文名稱(外文):(1) Crystal structure of PriB, a primosomal DNA replication protein of Escherichia coli.(2) Structural basis of glycosphingolipid-facilitated cobra cardiotoxin A3 membrane insertion and internalization: crystal structure of cardiotoxin A3/sulfatide compl
指導教授:蕭傳鐙蕭傳鐙引用關係
指導教授(外文):Chwan-Deng Hsiao
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:102
中文關鍵詞:蛋白質晶體結構大腸桿菌引子合成體心臟毒素眼鏡蛇醣神經胺醇脂
外文關鍵詞:crystal structureEscherichia coliPrimosometaiwancobracardiotoxinglycosphingolipids
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
(一) 細菌染色體的複製需要利用引子合成體 (Primosome) 來引導 DNA 的合成,而PriB是構成大腸桿菌 (Escherichia coli) 內fX型引子合成體 (fX-type primosome) 的重要蛋白質之一。體外實驗顯示PriB能與單股DNA,單股RNA或其他染色體複製相關蛋白相結合。本論文探討大腸桿菌引子合成體蛋白PriB的晶體結構。此結構是利用多波長反常散射法 (Multi-wavelength anomalous diffraction) 解出,並擁有2.1 Å的解析度。PriB蛋白質的單體結構形似單股DNA結合蛋白 (Single-stranded DNA-binding Protein) 的DNA結合區,然而PriB在細胞內是以雙倍體型式執行其功能,而非如同單股DNA結合蛋白在細胞內為四倍體。利用此次解出的結構資訊,與現有的生化研究結果相結合,我們推斷出PriB可能利用其表面的若干特定區域,在引子合成體組成時與DNA,RNA或其他蛋白質相結合。這些發現將有助於我們了解PriB在細菌染色體複製時所扮演的角色。
(二) 許多研究發現位在細胞表面的醣神經胺醇脂 (Glycosphingolipids) 在細胞間的辨識機制上扮演重要角色。例如,細菌、病毒或毒素蛋白會透過它們來入侵細胞。眼鏡蛇咬傷患者會受到心臟毒素 (Cardiotoxins) 的侵害,導致嚴重的組織壞死與心臟收縮停止。心臟毒素為一群同源且結構相似的鹼性胜肽,其性質類似細胞穿透胜肽 (Cell-penetrating peptides),能與細胞膜脂質和肝素 (Heparin) 結合。目前認為,當受到肝素的吸引而聚集到受害者細胞表面,心臟毒素的親脂活性可能導致細胞膜泄漏而殺死細胞。近期研究顯示台灣眼鏡蛇心臟毒素中的主要蛋白,心臟毒素A3,會結合細胞外膜的硫醣苷脂 (Sulfatide),藉助於硫醣苷脂導致細胞膜泄漏,並近一步入侵細胞內的粒腺體。硫醣苷脂為帶有硫酸半乳糖基的醣神經胺醇脂。本論文探討眼鏡蛇心臟毒素A3/硫醣苷脂複合體的晶體結構。此複合體晶體生長於類似細胞膜的疏水環境,並擁有2.3 Å的解析度。晶體結構顯示,心臟毒素A3能同時辨識硫醣苷脂上的頭部官能基以及神經醯胺 (Ceramide) 官能基部位的親水親油介面區,而硫醣苷脂在與心臟毒素A3結合後,改變了原有的構形。利用此次解出的結構資訊與現有的研究結果相結合,我們推論在兩者相結合後的脂質構形變化使得心臟毒素A3穿透細胞膜,並且以多倍體方式聚合而進入細胞。現今生物醫學領域廣泛研究利用細胞穿透胜肽來投遞癌症治療用DNA或蛋白質的方法,然而其細胞穿透的分子機制依然懸而未解。有鑑於心臟毒素A3和細胞穿透胜肽間在化學組成與對細胞的生理功能上十分相似,我們期盼提出此種藉由脂質引導蛋白毒素穿透細胞膜的機制有助於更了解細胞穿透胜肽的穿透機制。
(1) PriB is one of the Escherichia coli phiX-type primosome proteins, which are required for assembly of the primosome, a mobile multi-enzyme complex responsible for the initiation of DNA replication. Here we report the crystal structure of the Escherichia coli PriB at 2.1 Å resolution by multi-wavelength anomalous diffraction using a mercury derivative. The polypeptide chain of PriB is structurally similar to that of single-stranded DNA-binding protein (SSB). However, the biological unit of PriB is a dimer, not a homotetramer like SSB. Electrophoretic mobility shift assays demonstrated that PriB binds single-stranded DNA and single-stranded RNA with comparable affinity. We also show that PriB binds single-stranded DNA with certain base preferences. Base on the PriB structural information and biochemical studies, we propose that the potential tetramer formation surface and several other regions of PriB may participate in protein-protein interaction during DNA replication. These findings may illuminate the role of PriB in phiX-type primosome assembly.
(2) Cobra cardiotoxins, a family of basic polypeptides having lipid- and heparin-binding capacities similar to the cell-penetrating peptides, induce severe tissue necrosis and systolic heart arrest in snakebite victims. While cardiotoxins are specifically retained on the cell surface via heparin-mediated processes, their lipid binding ability appears to be responsible, at least in part, for cardiotoxin-induced membrane leakage and cell death. Recent studies showed that CTX A3, the major cardiotoxin from Taiwan cobra venom, binds to sulfatide in the outer leaflet of the plasma membrane, and consequently sulfatide mediates CTX A3-induced membrane leakage and CTX A3 internalization into mitochondria. Sulfatide is a glycosphingolipid with 3'-sulfated galactose headgroup. Here we describe the crystal structure of a CTX A3/sulfatide complex in a membrane-like environment at 2.3 Å resolution. The unexpected orientation of the sulfatide fatty chains in the structure allows prediction of the mode of toxin insertion into the plasma membrane. CTX A3 recognizes both the headgroup and the ceramide interfacial region of sulfatide to induce a lipid conformational change that may play a key role in CTX A3 oligomerization and cellular internalization. This proposed lipid-mediated toxin translocation mechanism may also shed light on the cellular uptake mechanism of the amphiphilic cell-penetrating peptides known to involve multiple internalization pathways.
Volume 1: Crystal structure of PriB, a primosomal DNA replication protein of Escherichia coli.

Chapter 1: Introduction ………………………………… 1
Chapter 2: Material and methods ………………………………… 5
Chapter 3: Results and discussion ………………………………… 13
Chapter 4: Conclusion ………………………………… 24
References ………………………………… 40

Volume 2: Structural basis of glycosphingolipid-facilitated cobra cardiotoxin A3 membrane insertion and internalization: crystal structure of cardiotoxin A3/sulfatide complex.

Chapter 1: Introduction ………………………………… 48
Chapter 2: Material and methods ………………………………… 59
Chapter 3: Results ………………………………… 66
Chapter 4: Discussion ………………………………… 70
Chapter 5: Conclusion ………………………………… 76
References ………………………………… 94
Ahn, V.E., Faull, K.F., Whitelegge, J.P., Fluharty, A.L. and Prive, G.G. (2003) Crystal structure of saposin B reveals a dimeric shell for lipid binding. Proc. Natl. Acad. Sci. U. S. A., 100, 38-43.
Allen, G.C., Jr. and Kornberg, A. (1991) The priB gene encoding the primosomal replication n protein of Escherichia coli. J. Biol. Chem., 266, 11610-11613.
Allen, G.C., Jr. and Kornberg, A. (1993) Assembly of the primosome of DNA replication in Escherichia coli. J. Biol. Chem., 268, 19204-19209.
Arai, K., McMacken, R., Yasuda, S. and Kornberg, A. (1981) Purification and properties of Escherichia coli protein i, a prepriming protein in fX174 DNA replication. J. Biol. Chem., 256, 5281-5286.
Aripov, T.F., Gasanov, S.E., Salakhutdinov, B.A., Rozenshtein, I.A. and Kamaev, F.G. (1989) Central Asian cobra venom cytotoxins-induced aggregation, permeability and fusion of liposomes. Gen. Physiol. Biophys., 8, 459-473.
Baker, T.A., Funnell, B.E. and Kornberg, A. (1987) Helicase action of dnaB protein during replication from the Escherichia coli chromosomal origin in vitro. J. Biol. Chem., 262, 6877-6885.
Bashford, D. and Gerwert, K. (1992) Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J. Mol. Biol., 224, 473-486.
Batenburg, A.M., Bougis, P.E., Rochat, H., Verkleij, A.J. and de Kruijff, B. (1985) Penetration of a cardiotoxin into cardiolipin model membranes and its implications on lipid organization. Biochemistry, 24, 7101-7110.
Benkovic, S.J., Valentine, A.M. and Salinas, F. (2001) Replisome-mediated DNA replication. Annu. Rev. Biochem., 70, 181-208.
Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. and Wheeler, D.L. (2005) GenBank. Nucleic Acids Res., 33, D34-38.
Berges, H., Oreglia, J., Joseph-Liauzun, E. and Fayet, O. (1997) Isolation and characterization of a priB mutant of Escherichia coli influencing plasmid copy number of Drop ColE1-type plasmids. J. Bacteriol., 179, 956-958.
Bhaskaran, R., Huang, C.C., Tsai, Y.C., Jayaraman, G., Chang, D.K. and Yu, C. (1994) Cardiotoxin II from Taiwan cobra venom, Naja naja atra. Structure in solution and comparison among homologous cardiotoxins. J. Biol. Chem., 269, 23500-23508.
Bilwes, A., Rees, B., Moras, D., Menez, R. and Menez, A. (1994) X-ray structure at 1.55 Å of toxin g, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for insertion into membranes. J. Mol. Biol., 239, 122-136.
Bobst, E.V., Perrino, F.W., Meyer, R.R. and Bobst, A.M. (1991) An EPR study to determine the relative nucleic acid binding affinity of single-stranded DNA-binding protein from Escherichia coli. Biochim. Biophys. Acta, 1078, 199-207.
Bougis, P.E., Khelif, A. and Rochat, H. (1989) On the inhibition of [Na+,K+]-ATPases by the components of Naja mossambica mossambica venom: evidence for two distinct rat brain [Na+,K+]-ATPase activities. Biochemistry, 28, 3037-3043.
Braganca, B.M., Patel, N.T. and Badrinath, P.G. (1967) Isolation and properties of a cobra venom factor selectively cytotoxic to Yoshida sarcoma cells. Biochim. Biophys. Acta, 136, 508-520.
Bramhill, D. and Kornberg, A. (1988) Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell, 52, 743-755.
Brodskii, L.I., Ivanov, V.V., Kalaidzidis Ia, L., Leontovich, A.M., Nikolaev, V.K., Feranchuk, S.I. and Drachev, V.A. (1995) GeneBee-NET: An Internet based server for biopolymer structure analysis. Biokhimiia, 60, 1221-1230.
Brünger, A.T. (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature, 355, 472-475.
Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T. and Warren, G.L. (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr., D54, 905-921.
Bruzik, K.S. and Nyholm, P.G. (1997) NMR study of the conformation of galactocerebroside in bilayers and solution: galactose reorientation during the metastable-stable gel transition. Biochemistry, 36, 566-575.
Bujalowski, W. and Lohman, T.M. (1986) Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry, 25, 7799-7802.
Chamberlain, L.H. and Gould, G.W. (2002) The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes. J. Biol. Chem., 277, 49750-49754.
Chang, L.S., Huang, H.B. and Lin, S.R. (2000) The multiplicity of cardiotoxins from Naja naja atra (Taiwan cobra) venom. Toxicon, 38, 1065-1076.
Chen, T.S., Chung, F.Y., Tjong, S.C., Goh, K.S., Huang, W.N., Chien, K.Y., Wu, P.L., Lin, H.C., Chen, C.J. and Wu, W.G. (2005) Structural difference between group I and group II cobra cardiotoxins: X-ray, NMR, and CD analysis of the effect of cis-proline conformation on three-fingered toxins. Biochemistry, 44, 7414-7426.
Chiang, C.M., Chang, S.L., Lin, H.J. and Wu, W.G. (1996) The role of acidic amino acid residues in the structural stability of snake cardiotoxins. Biochemistry, 35, 9177-9186.
Chien, K.Y., Chiang, C.M., Hseu, Y.C., Vyas, A.A., Rule, G.S. and Wu, W. (1994) Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J. Biol. Chem., 269, 14473-14483.
Chien, K.Y., Huang, W.N., Jean, J.H. and Wu, W.G. (1991) Fusion of sphingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom. Interactions of zwitterionic phospholipids with cardiotoxin analogues. J. Biol. Chem., 266, 3252-3259.
Chiou, S.H., Hung, C.C., Huang, H.C., Chen, S.T., Wang, K.T. and Yang, C.C. (1995) Sequence comparison and computer modelling of cardiotoxins and cobrotoxin isolated from Taiwan cobra. Biochem. Biophys. Res. Commun., 206, 22-32.
Chiou, S.H., Raynor, R.L., Zheng, B., Chambers, T.C. and Kuo, J.F. (1993) Cobra venom cardiotoxin (cytotoxin) isoforms and neurotoxin: comparative potency of protein kinase C inhibition and cancer cell cytotoxicity and modes of enzyme inhibition. Biochemistry, 32, 2062-2067.
Condrea, E. (1974) Membrane-active polypeptides from snake venom: cardiotoxins and haemocytotoxins. Experientia, 30, 121-129.
Cox, M.M. (2001) Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. Annu. Rev. Genet., 35, 53-82.
Cox, M.M., Goodman, M.F., Kreuzer, K.N., Sherratt, D.J., Sandler, S.J. and Marians, K.J. (2000) The importance of repairing stalled replication forks. Nature, 404, 37-41.
Curth, U., Genschel, J., Urbanke, C. and Greipel, J. (1996) In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein. Nucleic Acids Res., 24, 2706-2711.
Curth, U., Urbanke, C., Greipel, J., Gerberding, H., Tiranti, V. and Zeviani, M. (1994) Single-stranded-DNA-binding proteins from human mitochondria and Escherichia coli have analogous physicochemical properties. Eur. J. Biochem., 221, 435-443.
Dauplais, M., Neumann, J.M., Pinkasfeld, S., Menez, A. and Roumestand, C. (1995) An NMR study of the interaction of cardiotoxin g from Naja nigricollis with perdeuterated dodecylphosphocholine micelles. Eur. J. Biochem., 230, 213-220.
De Vries, J., Genschel, J., Urbanke, C., Thole, H. and Wackernagel, W. (1994) The single-stranded-DNA-binding proteins (SSB) of Proteus mirabilis and Serratia marcescens. Eur. J. Biochem., 224, 613-622.
Demuro, A., Mina, E., Kayed, R., Milton, S.C., Parker, I. and Glabe, C.G. (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem., 280, 17294-17300.
Dubovskii, P.V., Dementieva, D.V., Bocharov, E.V., Utkin, Y.N. and Arseniev, A.S. (2001) Membrane binding motif of the P-type cardiotoxin. J. Mol. Biol., 305, 137-149.
Dufourcq, J., Faucon, J.F., Bernard, E., Pezolet, M., Tessier, M., van Rietschoten, J., Delori, P. and Rochat, H. (1982) Structure-function relationships for cardiotoxins interacting with phospholipids. Toxicon, 20, 165-174.
Dufton, M.J. and Hider, R.C. (1983) Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. CRC Crit. Rev. Biochem., 14, 113-171.
Dufton, M.J. and Hider, R.C. (1988) Structure and pharmacology of elapid cytotoxins. Pharmacol. Ther., 36, 1-40.
Dufton, M.J. and Hider, R.C. (1991) The strucutre and pharmacology of Elapid cytotoxins. In Harvey, A.L. (ed.), Snake toxins. Pergamon Press, New York, pp. 259-302.
Efremov, R.G., Volynsky, P.E., Nolde, D.E., Dubovskii, P.V. and Arseniev, A.S. (2002) Interaction of cardiotoxins with membranes: a molecular modeling study. Biophys J, 83, 144-153.
Eguchi, Y., Itoh, T. and Tomizawa, J. (1991) Antisense RNA. Annu. Rev. Biochem., 60, 631-652.
Esteve, E., Mabrouk, K., Dupuis, A., Smida-Rezgui, S., Altafaj, X., Grunwald, D., Platel, J.C., Andreotti, N., Marty, I., Sabatier, J.M., Ronjat, M. and De Waard, M. (2005) Transduction of the scorpion toxin maurocalcine into cells. Evidence that the toxin crosses the plasma membrane. J. Biol. Chem., 280, 12833-12839.
Evans, G. and Pettifer, R.F. (2001) CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra J. Appl. Crystallogr., 34, 82-86.
Felberbaum-Corti, M., Van Der Goot, F.G. and Gruenberg, J. (2003) Sliding doors: clathrin-coated pits or caveolae? Nat. Cell Biol., 5, 382-384.
Fielding, C.J. and Fielding, P.E. (2003) Relationship between cholesterol trafficking and signaling in rafts and caveolae. Biochim. Biophys. Acta, 1610, 219-228.
Fischer, R., Kohler, K., Fotin-Mleczek, M. and Brock, R. (2004) A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides. J. Biol. Chem., 279, 12625-12635.
Fletcher, J.E., Hubert, M., Wieland, S.J., Gong, Q.H. and Jiang, M.S. (1996) Similarities and differences in mechanisms of cardiotoxins, melittin and other myotoxins. Toxicon, 34, 1301-1311.
Fletcher, J.E. and Lizzo, F.H. (1987) Contracture induction by snake venom cardiotoxin in skeletal muscle from humans and rats. Toxicon, 25, 1003-1010.
Flores, M.J., Ehrlich, S.D. and Michel, B. (2002) Primosome assembly requirement for replication restart in the Escherichia coli holDG10 replication mutant. Mol. Microbiol., 44, 783-792.
Forouhar, F., Huang, W.N., Liu, J.H., Chien, K.Y., Wu, W.G. and Hsiao, C.D. (2003) Structural basis of membrane-induced cardiotoxin A3 oligomerization. J. Biol. Chem., 278, 21980-21988.
Fuller, R.S., Funnell, B.E. and Kornberg, A. (1984) The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell, 38, 889-900.
Funnell, B.E., Baker, T.A. and Kornberg, A. (1987) In vitro assembly of a prepriming complex at the origin of the Escherichia coli chromosome. J. Biol. Chem., 262, 10327-10334.
Futaki, S. (2005) Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv. Drug Deliv. Rev., 57, 547-558.
Gatineau, E., Toma, F., Montenay-Garestier, T., Takechi, M., Fromageot, P. and Menez, A. (1987) Role of tyrosine and tryptophan residues in the structure-activity relationships of a cardiotoxin from Naja nigricollis venom. Biochemistry, 26, 8046-8055.
Genschel, J., Curth, U. and Urbanke, C. (2000) Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease. Biol. Chem., 381, 183-192.
Gille, H. and Messer, W. (1991) Localized DNA melting and structural pertubations in the origin of replication, oriC, of Escherichia coli in vitro and in vivo. EMBO J., 10, 1579-1584.
Goncalves, E., Kitas, E. and Seelig, J. (2005) Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Biochemistry, 44, 2692-2702.
Greipel, J., Urbanke, C. and Maass, G. (1989) The single-stranded DNA binding protein of Escherichia coli. Physicochemical properties and biological functions. In Saenger, W. and Heinemann, U. (eds.), Protein-nucleic acid interaction. Macmillan Press, London, pp. 61-86.
Hakomori, S. and Igarashi, Y. (1995) Functional role of glycosphingolipids in cell recognition and signaling. J. Biochem. (Tokyo), 118, 1091-1103.
Handa, P., Acharya, N. and Varshney, U. (2001) Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases. J. Biol. Chem., 276, 16992-16997.
Harinarayanan, R. and Gowrishankar, J. (2004) A dnaC mutation in Escherichia coli that affects copy number of ColE1-Like plasmids and the PriA-PriB (but Not Rep-PriC) pathway of chromosomal replication restart. Genetics, 166, 1165-1176.
Hayashi, K., Takechi, M., Sasaki, T. and Lee, C.Y. (1975) Amino acid sequence of cardiotoxin-analogue I from the venom of Naja naja atra. Biochem. Biophys. Res. Commun., 64, 360-366.
Hendrickson, W.A. (1991) Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science, 254, 51-58.
Henikoff, S. and Henikoff, J.G. (1992) Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. U. S. A., 89, 10915-10919.
Hinman, C.L., Lepisto, E., Stevens, R., Montgomery, I.N., Rauch, H.C. and Hudson, R.A. (1987) Effects of cardiotoxin D from Naja naja siamensis snake venom upon murine splenic lymphocytes. Toxicon, 25, 1011-1014.
Ho, C.L., Lee, C.Y. and Lu, H.H. (1975) Electrophysiological effects of cobra cardiotoxin on rabbit heart cells. Toxicon, 13, 437-446.
Ho, K.H., Kwan, C.Y., Huang, S.J. and Bourreau, J.P. (1998) Dual effect of cobra cardiotoxin on vascular smooth muscle and endothelium. Acta Pharmacol. Sin., 19, 197-202.
Hodges, S.J., Agbaji, A.S., Harvey, A.L. and Hider, R.C. (1987) Cobra cardiotoxins. Purification, effects on skeletal muscle and structure/activity relationships. Eur. J. Biochem., 165, 373-383.
Holm, L. and Sander, C. (1995) Dali: a network tool for protein structure comparison. Trends Biochem. Sci., 20, 478-480.
Holthuis, J.C. and Levine, T.P. (2005) Lipid traffic: floppy drives and a superhighway. Nat. Rev. Mol. Cell Biol., 6, 209-220.
Huang, J.L. and Trumble, W.R. (1991) Cardiotoxin from cobra venom affects the Ca-Mg-ATPase of cardiac sarcolemmal membrane vesicles. Toxicon, 29, 31-41.
Huang, W.N., Sue, S.C., Wang, D.S., Wu, P.L. and Wu, W.G. (2003) Peripheral binding mode and penetration depth of cobra cardiotoxin on phospholipid membranes as studied by a combined FTIR and computer simulation approach. Biochemistry, 42, 7457-7466.
Huang, W.N., Wu, P.L. and G., W.W. (2005) SGC-facilitated CTX A3 pore formation in model membranes. unpublished data.
Hung, C.C., Wu, S.H. and Chiou, S.H. (1993) Sequence characterization of cardiotoxins from Taiwan cobra: isolation of a new isoform. Biochem. Mol. Biol. Int., 31, 1031-1040.
Ishizuka, I. (1997) Chemistry and functional distribution of sulfoglycolipids. Prog. Lipid Res., 36, 245-319.
Ishmael, F.T., Alley, S.C. and Benkovic, S.J. (2001) Identification and mapping of protein-protein interactions between gp32 and gp59 by cross-linking. J. Biol. Chem., 276, 25236-25242.
Jahnke, W., Mierke, D.F., Beress, L. and Kessler, H. (1994) Structure of cobra cardiotoxin CTX I as derived from nuclear magnetic resonance spectroscopy and distance geometry calculations. J. Mol. Biol., 240, 445-458.
Jang, J.Y., Krishnaswamy, T., Kumar, S., Jayaraman, G., Yang, P.W. and Yu, C. (1997) Comparison of the hemolytic activity and solution structures of two snake venom cardiotoxin analogues which only differ in their N-terminal amino acid. Biochemistry, 36, 14635-14641.
Jayaraman, G., Krishnaswamy, T., Kumar, S. and Yu, C. (1999) Binding of nucleotide triphosphates to cardiotoxin analogue II from the Taiwan cobra venom (Naja naja atra). Elucidation of the structural interactions in the dATP-cardiotoxin analogue II complex. J. Biol. Chem., 274, 17869-17875.
Jones, S. and Thornton, J.M. (1996) Principles of protein-protein interactions. Proc. Natl. Acad. Sci. U. S. A., 93, 13-20.
Jones, T.A., Zou, J.Y., Cowan, S.W. and Kjeldgaard. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr., A47, 110-119.
Jordan, I.K., Makarova, K.S., Spouge, J.L., Wolf, Y.I. and Koonin, E.V. (2001) Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Res., 11, 555-565.
Kaneda, N., Sasaki, T. and Hayashi, K. (1977) Primary structures of cardiotoxin analogues II and IV from the venom of Naja jaja atra. Biochim. Biophys. Acta, 491, 53-66.
Kelley, L.A., MacCallum, R.M. and Sternberg, M.J. (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol., 299, 499-520.
Kini, R.M. (2002) Molecular moulds with multiple missions: functional sites in three-finger toxins. Clin. Exp. Pharmacol. Physiol., 29, 815-822.
Kornberg, A. and Baker, T. (1992a) Primases, primosomes, and priming. In Kornberg, A. and Baker, T. (eds.), DNA replication. W. H. Freeman & Co., New York, pp. 275-306.
Kornberg, A. and Baker, T. (1992b) Regulation of chromosomal replication and cell division. In Kornberg, A. and Baker, T. (eds.), DNA replication. W. H. Freeman & Co., New York, pp. 731-769.
Kraulis, P.J. (1991) MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr., 24, 946-950.
Kumar, T.K., Jayaraman, G., Lee, C.S., Arunkumar, A.I., Sivaraman, T., Samuel, D. and Yu, C. (1997) Snake venom cardiotoxins-structure, dynamics, function and folding. J. Biomol. Struct. Dyn., 15, 431-463.
Kuo, J.F., Raynor, R.L., Mazzei, G.J., Schatzman, R.C., Turner, R.S. and Kem, W.R. (1983) Cobra polypeptide cytotoxin I and marine worm polypeptide cytotoxin A-IV are potent and selective inhibitors of phospholipid-sensitive Ca2+-dependent protein kinase. FEBS Lett., 153, 183-186.
Kuzminov, A. (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage l. Microbiol. Mol. Biol. Rev., 63, 751-813.
Kwan, C.Y., Kwan, T.K. and Huang, S.J. (2002) Effect of calcium on the vascular contraction induced by cobra venom cardiotoxin. Clin. Exp. Pharmacol. Physiol., 29, 823-828.
Laskowski, R.A., MacArthur, M. W., Moss, D. S., Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr., 26, 283-291.
Lauterwein, J. and Wuthrich, K. (1978) A possible structural basis for the different modes of action of neurotoxins and cardiotoxins from snake venoms. FEBS Lett., 93, 181-184.
Lee, C.Y., Chang, C.C., Chiu, T.H., Chiu, P.J., Tseng, T.C. and Lee, S.Y. (1968) Pharmacological properties of cardiotoxin isolated from Formosan cobra venom. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol., 259, 360-374.
Lee, S.C., Guan, H.H., Wang, C.H., Huang, W.N., Tjong, S.C., Chen, C.J. and Wu, W.G. (2005) Structural basis of citrate-dependent and heparan sulfate-mediated cell surface retention of cobra cardiotoxin A3. J. Biol. Chem., 280, 9567-9577.
Lencer, W.I. and Tsai, B. (2003) The intracellular voyage of cholera toxin: going retro. Trends Biochem. Sci., 28, 639-645.
Lin Shiau, S.Y., Huang, M.C. and Lee, C.Y. (1976) Mechanism of action of cobra cardiotoxin in the skeletal muscle. J. Pharmacol. Exp. Ther., 196, 758-770.
Ling, H., Boodhoo, A., Hazes, B., Cummings, M.D., Armstrong, G.D., Brunton, J.L. and Read, R.J. (1998) Structure of the shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry, 37, 1777-1788.
Liu, J. and Marians, K.J. (1999) PriA-directed assembly of a primosome on D loop DNA. J. Biol. Chem., 274, 25033-25041.
Liu, J., Nurse, P. and Marians, K.J. (1996) The ordered assembly of the fX174-type primosome. III. PriB facilitates complex formation between PriA and DnaT. J. Biol. Chem., 271, 15656-15661.
Liu, J., Xu, L., Sandler, S.J. and Marians, K.J. (1999) Replication fork assembly at recombination intermediates is required for bacterial growth. Proc. Natl. Acad. Sci. U. S. A., 96, 3552-3555.
Liu, J.H., Chang, T.W., Huang, C.Y., Chen, S.U., Wu, H.N., Chang, M.C. and Hsiao, C.D. (2004) Crystal structure of PriB, a primosomal DNA replication protein of Escherichia coli. J. Biol. Chem., 279, 50465-50471.
Lo Conte, L., Chothia, C. and Janin, J. (1999) The atomic structure of protein-protein recognition sites. J. Mol. Biol., 285, 2177-2198.
Lohman, T.M. and Overman, L.B. (1985) Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J. Biol. Chem., 260, 3594-3603.
Low, R.L., Shlomai, J. and Kornberg, A. (1982) Protein n, a primosomal DNA replication protein of Escherichia coli. Purification and characterization. J. Biol. Chem., 257, 6242-6250.
Lynch, M. and Conery, J.S. (2000) The evolutionary fate and consequences of duplicate genes. Science, 290, 1151-1155.
Malinina, L., Malakhova, M.L., Teplov, A., Brown, R.E. and Patel, D.J. (2004) Structural basis for glycosphingolipid transfer specificity. Nature, 430, 1048-1053.
Marians, K.J. (1999) PriA: at the crossroads of DNA replication and recombination. Prog. Nucleic Acid Res. Mol. Biol., 63, 39-67.
Marians, K.J. (2000) PriA-directed replication fork restart in Escherichia coli. Trends Biochem. Sci., 25, 185-189.
Marszalek, J. and Kaguni, J.M. (1994) DnaA protein directs the binding of DnaB protein in initiation of DNA replication in Escherichia coli. J. Biol. Chem., 269, 4883-4890.
Masai, H., Nomura, N. and Arai, K. (1990a) The ABC-primosome. A novel priming system employing dnaA, dnaB, dnaC, and primase on a hairpin containing a dnaA box sequence. J. Biol. Chem., 265, 15134-15144.
Masai, H., Nomura, N., Kubota, Y. and Arai, K. (1990b) Roles of fX174 type primosome- and G4 type primase-dependent primings in initiation of lagging and leading strand syntheses of DNA replication. J. Biol. Chem., 265, 15124-15133.
Matsumoto, T., Morimoto, Y., Shibata, N., Kinebuchi, T., Shimamoto, N., Tsukihara, T. and Yasuoka, N. (2000) Roles of functional loops and the C-terminal segment of a single-stranded DNA binding protein elucidated by X-ray structure analysis. J. Biochem. (Tokyo), 127, 329-335.
Matthews, B.W. (1968) Solvent content of protein crystals. J. Mol. Biol., 33, 491-497.
McCann, J.A., Mertz, J.A., Czworkowski, J. and Picking, W.D. (1997) Conformational changes in cholera toxin B subunit-ganglioside GM1 complexes are elicited by environmental pH and evoke changes in membrane structure. Biochemistry, 36, 9169-9178.
McGlynn, P., Al-Deib, A.A., Liu, J., Marians, K.J. and Lloyd, R.G. (1997) The DNA replication protein PriA and the recombination protein RecG bind D-loops. J. Mol. Biol., 270, 212-221.
McGlynn, P. and Lloyd, R.G. (2002) Recombinational repair and restart of damaged replication forks. Nat. Rev. Mol. Cell Biol., 3, 859-870.
McPherson, A. (2001) A comparison of salts for the crystallization of macromolecules. Protein Sci., 10, 418-422.
McRee, D.E. (1999) XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol., 125, 156-165.
Mebs, D. (1998) Enzymes in snakes venoms: an overview. In Bailey, G.S. (ed.), Enzymes from snake venoms. Alaken, Inc., Fort Collins, pp. 1-10.
Menez, A., Gatineau, E., Roumestand, C., Harvey, A.L., Mouawad, L., Gilquin, B. and Toma, F. (1990) Do cardiotoxins possess a functional site? Structural and chemical modification studies reveal the functional site of the cardiotoxin from Naja nigricollis. Biochimie, 72, 575-588.
Menikh, A., Nyholm, P.G. and Boggs, J.M. (1997) Characterization of the interaction of Ca2+ with hydroxy and non-hydroxy fatty acid species of cerebroside sulfate by Fourier transform infrared spectroscopy and molecular modeling. Biochemistry, 36, 3438-3447.
Merritt, E.A., Sarfaty, S., van den Akker, F., L'Hoir, C., Martial, J.A. and Hol, W.G. (1994) Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci., 3, 166-175.
Messer, W. (2002) The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol. Rev., 26, 355-374.
Meyer, R.R. and Laine, P.S. (1990) The single-stranded DNA-binding protein of Escherichia coli. Microbiol. Rev., 54, 342-380.
Michel, B. (2000) Replication fork arrest and DNA recombination. Trends Biochem. Sci., 25, 173-178.
Minden, J.S. and Marians, K.J. (1985) Replication of pBR322 DNA in vitro with purified proteins. Requirement for topoisomerase I in the maintenance of template specificity. J. Biol. Chem., 260, 9316-9325.
Munro, S. (2003) Lipid rafts: elusive or illusive? Cell, 115, 377-388.
Murzin, A.G. (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J., 12, 861-867.
Narita, K. and Lee, C.Y. (1970) The amino acid sequence of cardiotoxin from Formosan cobra (Naja naja atra) venom. Biochem. Biophys. Res. Commun., 41, 339-343.
Navaza, J. (1994) AMoRe: an automated package for molecular replacement. Acta Crystallogr., D50, 157-163.
Ng, J.Y. and Marians, K.J. (1996a) The ordered assembly of the fX174-type primosome. I. Isolation and identification of intermediate protein-DNA complexes. J. Biol. Chem., 271, 15642-15648.
Ng, J.Y. and Marians, K.J. (1996b) The ordered assembly of the fX174-type primosome. II. Preservation of primosome composition from assembly through replication. J. Biol. Chem., 271, 15649-15655.
Nicholas, K.B., Nicholas, H.B.J. and Deerfield, D.W.I. (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW News, 4, 14.
Nirthanan, S. and Gwee, M.C. (2004) Three-finger a-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J. Pharmacol. Sci., 94, 1-17.
Nishi, T., Shimizu, N., Hiramoto, M., Sato, I., Yamaguchi, Y., Hasegawa, M., Aizawa, S., Tanaka, H., Kataoka, K., Watanabe, H. and Handa, H. (2002) Spatial redox regulation of a critical cysteine residue of NF-kB in vivo. J. Biol. Chem., 277, 44548-44556.
Nooren, I.M. and Thornton, J.M. (2003) Diversity of protein-protein interactions. EMBO J., 22, 3486-3492.
Nyholm, P.G., Pascher, I. and Sundell, S. (1990) The effect of hydrogen bonds on the conformation of glycosphingolipids. Methylated and unmethylated cerebroside studied by X-ray single crystal analysis and model calculations. Chem. Phys. Lipids, 52, 1-10.
Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol., 276, 307-326.
Ou, Y.J., Leung, Y.M., Huang, S.J. and Kwan, C.Y. (1997) Dual effects of extracellular Ca2+ on cardiotoxin-induced cytotoxicity and cytosolic Ca2+ changes in cultured single cells of rabbit aortic endothelium. Biochim. Biophys. Acta, 1330, 29-38.
Overman, L.B., Bujalowski, W. and Lohman, T.M. (1988) Equilibrium binding of Escherichia coli single-strand binding protein to single-stranded nucleic acids in the (SSB)65 binding mode. Cation and anion effects and polynucleotide specificity. Biochemistry, 27, 456-471.
Palmer, M. (2004) Cholesterol and the activity of bacterial toxins. FEMS Microbiol Lett, 238, 281-289.
Pascher, I., Lundmark, M., Nyholm, P.G. and Sundell, S. (1992) Crystal structures of membrane lipids. Biochim. Biophys. Acta., 1113, 339-373.
Pascher, I. and Sundell, S. (1977) Molecular arrangement in sphingolipids. The crystal structure of cerebroside. Chem. Phys. Lipids, 20, 175-191.
Patel, H.V., Vyas, A.A., Vyas, K.A., Liu, Y.S., Chiang, C.M., Chi, L.M. and Wu, W. (1997) Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. J. Biol. Chem., 272, 1484-1492.
Patel, T.N., Braganca, B.M. and Bellare, R.A. (1969) Changes produced by cobra venom cytotoxin on the morphology of Yoshida sarcoma cells. Exp. Cell Res., 57, 289-297.
Pokorny, A. and Almeida, P.F. (2004) Kinetics of dye efflux and lipid flip-flop induced by d-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, a-helical peptides. Biochemistry, 43, 8846-8857.
Pokorny, A. and Almeida, P.F. (2005) Permeabilization of raft-containing lipid vesicles by d-lysin: a mechanism for cell sensitivity to cytotoxic peptides. Biochemistry, 44, 9538-9544.
Ponomarev, V.A., Makarova, K.S., Aravind, L. and Koonin, E.V. (2003) Gene duplication with displacement and rearrangement: origin of the bacterial replication protein PriB from the single-stranded DNA-binding protein Ssb. J. Mol. Microbiol. Biotechnol., 5, 225-229.
Raghunathan, S., Kozlov, A.G., Lohman, T.M. and Waksman, G. (2000) Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat. Struct. Biol., 7, 648-652.
Raghunathan, S., Ricard, C.S., Lohman, T.M. and Waksman, G. (1997) Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength X-ray diffraction on the selenomethionyl protein at 2.9-Å resolution. Proc. Natl. Acad. Sci. U. S. A., 94, 6652-6657.
Ramachandran, G.N. and Sasisekharan, V. (1968) Conformation of polypeptides and proteins. Adv. Protein Chem., 23, 283-438.
Raman, R., Sasisekharan, V. and Sasisekharan, R. (2005) Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem. Biol., 12, 267-277.
Ravelli, R.B.G., Sweet, R.M., Skinner, J.M., Duisenberg, A.J.M. and Kroon, J. (1997) STRATEGY: a program to optimize the starting spindle angle and scan range for X-ray data collection. J. Appl. Crystallogr., 30, 551 - 554.
Raynor, R.L., Zheng, B. and Kuo, J.F. (1991) Membrane interactions of amphiphilic polypeptides mastoparan, melittin, polymyxin B, and cardiotoxin. Differential inhibition of protein kinase C, Ca2+/calmodulin-dependent protein kinase II and synaptosomal membrane Na,K-ATPase, and Na+ pump and differentiation of HL60 cells. J. Biol. Chem., 266, 2753-2758.
Richard, J.P., Melikov, K., Brooks, H., Prevot, P., Lebleu, B. and Chernomordik, L.V. (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem., 280, 15300-15306.
Richard, J.P., Melikov, K., Vives, E., Ramos, C., Verbeure, B., Gait, M.J., Chernomordik, L.V. and Lebleu, B. (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem., 278, 585-590.
Roderick, S.L., Chan, W.W., Agate, D.S., Olsen, L.R., Vetting, M.W., Rajashankar, K.R. and Cohen, D.E. (2002) Structure of human phosphatidylcholine transfer protein in complex with its ligand. Nat. Struct. Biol., 9, 507-511.
Rostand, K.S. and Esko, J.D. (1997) Microbial adherence to and invasion through proteoglycans. Infect. Immun., 65, 1-8.
Saikrishnan, K., Jeyakanthan, J., Venkatesh, J., Acharya, N., Sekar, K., Varshney, U. and Vijayan, M. (2003) Structure of Mycobacterium tuberculosis single-stranded DNA-binding protein. Variability in quaternary structure and its implications. J. Mol. Biol., 331, 385-393.
Sandler, S.J. and Marians, K.J. (2000) Role of PriA in replication fork reactivation in Escherichia coli. J. Bacteriol., 182, 9-13.
Sandler, S.J., Marians, K.J., Zavitz, K.H., Coutu, J., Parent, M.A. and Clark, A.J. (1999) dnaC mutations suppress defects in DNA replication- and recombination-associated functions in priB and priC double mutants in Escherichia coli K-12. Mol. Microbiol., 34, 91-101.
Sandler, S.J., McCool, J.D., Do, T.T. and Johansen, R.U. (2001) PriA mutations that affect PriA-PriC function during replication restart. Mol. Microbiol., 41, 697-704.
Sanner, M.F., Olson, A.J. and Spehner, J.C. (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers, 38, 305-320.
Schekman, R., Weiner, A. and Kornberg, A. (1974) Multienzyme systems of DNA replication. Science, 186, 987-993.
Schengrund, C.L. (2003) "Multivalent" saccharides: development of new approaches for inhibiting the effects of glycosphingolipid-binding pathogens. Biochem Pharmacol, 65, 699-707.
Schuttelkopf, A.W. and van Aalten, D.M. (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr., D60, 1355-1363.
Sharma, D.K., Brown, J.C., Choudhury, A., Peterson, T.E., Holicky, E., Marks, D.L., Simari, R., Parton, R.G. and Pagano, R.E. (2004) Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol. Biol. Cell, 15, 3114-3122.
Sillence, D.J. and Platt, F.M. (2004) Glycosphingolipids in endocytic membrane transport. Semin. Cell Dev. Biol., 15, 409-416.
Singh, R.D., Puri, V., Valiyaveettil, J.T., Marks, D.L., Bittman, R. and Pagano, R.E. (2003) Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol. Biol. Cell, 14, 3254-3265.
Smith, D.C., Lord, J.M., Roberts, L.M. and Johannes, L. (2004) Glycosphingolipids as toxin receptors. Semin. Cell Dev. Biol., 15, 397-408.
Stefani, M. (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim. Biophys. Acta, 1739, 5-25.
Su, S.H., Su, S.J., Lin, S.R. and Chang, K.L. (2003) Cardiotoxin-III selectively enhances activation-induced apoptosis of human CD8+ T lymphocytes. Toxicol. Appl. Pharmacol., 193, 97-105.
Sue, S.C., Brisson, J.R., Chang, S.C., Huang, W.N., Lee, S.C., Jarrell, H.C. and Wu, W. (2001a) Structures of heparin-derived disaccharide bound to cobra cardiotoxins: context-dependent conformational change of heparin upon binding to the rigid core of the three-fingered toxin. Biochemistry, 40, 10436-10446.
Sue, S.C., Chien, K.Y., Huang, W.N., Abraham, J.K., Chen, K.M. and Wu, W.G. (2002) Heparin binding stabilizes the membrane-bound form of cobra cardiotoxin. J. Biol. Chem., 277, 2666-2673.
Sue, S.C., Jarrell, H.C., Brisson, J.R. and Wu, W.G. (2001b) Dynamic characterization of the water binding loop in the P-type cardiotoxin: implication for the role of the bound water molecule. Biochemistry, 40, 12782-12794.
Sue, S.C., Rajan, P.K., Chen, T.S., Hsieh, C.H. and Wu, W. (1997) Action of Taiwan cobra cardiotoxin on membranes: binding modes of a b-sheet polypeptide with phosphatidylcholine bilayers. Biochemistry, 36, 9826-9836.
Sun, J.J. and Walker, M.J. (1986) Actions of cardiotoxins from the southern Chinese cobra (Naja naja atra) on rat cardiac tissue. Toxicon, 24, 233-245.
Sun, Y.J., Wu, W.G., Chiang, C.M., Hsin, A.Y. and Hsiao, C.D. (1997) Crystal structure of cardiotoxin V from Taiwan cobra venom: pH-dependent conformational change and a novel membrane-binding motif identified in the three-finger loops of P-type cardiotoxin. Biochemistry, 36, 2403-2413.
Surewicz, W.K., Stepanik, T.M., Szabo, A.G. and Mantsch, H.H. (1988) Lipid-induced changes in the secondary structure of snake venom cardiotoxins. J. Biol. Chem., 263, 786-790.
Takechi, M., Tanaka, Y. and Hayashi, K. (1986) Binding of cardiotoxin analogue III from Formosan cobra venom to FL cells. FEBS Lett., 205, 143-146.
Teng, C.M., Jy, W. and Ouyang, C. (1984) Cardiotoxin from Naja naja atra snake venom: a potentiator of platelet aggregation. Toxicon, 22, 463-470.
Terwilliger, T.C. (2003) Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr., D59, 38-44.
Terwilliger, T.C. and Berendzen, J. (1999) Automated MAD and MIR structure solution. Acta Crystallogr., D55, 849-861.
Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673-4680.
Thoren, P.E., Persson, D., Esbjorner, E.K., Goksor, M., Lincoln, P. and Norden, B. (2004) Membrane binding and translocation of cell-penetrating peptides. Biochemistry, 43, 3471-3489.
Tougu, K., Peng, H. and Marians, K.J. (1994) Identification of a domain of Escherichia coli primase required for functional interaction with the DnaB helicase at the replication fork. J. Biol. Chem., 269, 4675-4682.
Tsetlin, V. (1999) Snake venom a-neurotoxins and other 'three-finger' proteins. Eur. J. Biochem., 264, 281-286.
Tzeng, W.F. and Chen, Y.H. (1988) Suppression of snake-venom cardiotoxin-induced cardiomyocyte degeneration by blockage of Ca2+ influx or inhibition of non-lysosomal proteinases. Biochem. J., 256, 89-95.
Vaguine, A.A., Richelle, J. and Wodak, S.J. (1999) SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr., D55, 191-205.
Vincent, J.P., Schweitz, H., Chicheportiche, R., Fosset, M., Balerna, M., Lenoir, M.C. and Lazdunski, M. (1976) Molecular mechanism of cardiotoxin action on axonal membranes. Biochemistry, 15, 3171-3175.
Vyas, A.A., Pan, J.J., Patel, H.V., Vyas, K.A., Chiang, C.M., Sheu, Y.C., Hwang, J.K. and Wu, W. (1997) Analysis of binding of cobra cardiotoxins to heparin reveals a new b-sheet heparin-binding structural motif. J. Biol. Chem., 272, 9661-9670.
Vyas, K.A., Patel, H.V., Vyas, A.A. and Wu, W. (1998) Glycosaminoglycans bind to homologous cardiotoxins with different specificity. Biochemistry, 37, 4527-4534.
Wang, C.H., Lee, S.C. and Wu, W.G. (2006a) The role of heparin binding specificity of CTX homologs in the internalization process. unpublished data.
Wang, C.H., Liu, J.H., Lee, S.C., Hsiao, C.D. and Wu, W.G. (2006b) Glycosphingolipid-facilitated membrane insertion and internalization of cobra cardiotoxin: the sulfatide/cardiotoxin complex structure in a membrane-like environment suggests a lipid-dependent cell-penetrating mechanism for membrane binding polypeptides. J. Biol. Chem., 281, in press.
Wang, C.H., Monette, R., Lee, S.C., Morley, P. and Wu, W.G. (2005) Cobra cardiotoxin-induced cell death in fetal rat cardiomyocytes and cortical neurons: different pathway but similar cell surface target. Toxicon, 46, 430-440.
Wang, C.H. and Wu, W.G. (2005a) Amphiphilic b-sheet cobra cardiotoxin targets mitochondria and disrupts its network. FEBS Lett., 579, 3169-3174.
Wang, C.H. and Wu, W.G. (2005b) Membrane pore formation and internalization of cobra cardiotoxin in myocytes: mechanism and cytotoxicity (Ph.D. thesis). Institute of Bioinformatics and Structural Biology. National Tsing Hua University, Taiwan, pp. 93-96.
Webster, G., Genschel, J., Curth, U., Urbanke, C., Kang, C. and Hilgenfeld, R. (1997) A common core for binding single-stranded DNA: structural comparison of the single-stranded DNA-binding proteins (SSB) from E. coli and human mitochondria. FEBS Lett., 411, 313-316.
Wickner, S. and Hurwitz, J. (1974) Conversion of fX174 viral DNA to double-stranded form by purified Escherichia coli proteins. Proc. Natl. Acad. Sci. U. S. A., 71, 4120-4124.
Williams, S.J. and Davies, G.J. (2001) Protein--carbohydrate interactions: learning lessons from nature. Trends Biotechnol., 19, 356-362.
Wilson, A.J.C. (1949) The probability distribution of X-ray intensities. Acta Crystallogr., 2, 318-321.
Wu, P.L., Mori, S., Lee, S.C., Akakura, N., Wu, W.G. and Takada, Y. (2005) Specific binding of cobra cardiotoxins, members of the Ly-6 protein family, to integrin aVb3. FEBS J., 272 (s1), D1-050P.
Wu, W.G. (1998) Cobra cardiotoxin and phospholipase A2 as GAG-binding toxins: on the path from structure to cardiotoxicity and inflammation. Trends Cardiovasc. Med., 8, 270-278.
Xu, L. and Marians, K.J. (2003) PriA mediates DNA replication pathway choice at recombination intermediates. Mol. Cell., 11, 817-826.
Yang, C., Curth, U., Urbanke, C. and Kang, C. (1997) Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 Å resolution. Nat. Struct. Biol., 4, 153-157.
Yang, S.H., Chien, C.M., Lu, M.C., Lu, Y.J., Wu, Z.Z. and Lin, S.R. (2005) Cardiotoxin III induces apoptosis in K562 cells through a mitochondrial-mediated pathway. Clin. Exp. Pharmacol. Physiol., 32, 515-520.
Yeagle, P.L. (1985) Cholesterol and the cell membrane. Biochim. Biophys. Acta, 822, 267-287.
Zajonc, D.M., Crispin, M.D., Bowden, T.A., Young, D.C., Cheng, T.Y., Hu, J., Costello, C.E., Rudd, P.M., Dwek, R.A., Miller, M.J., Brenner, M.B., Moody, D.B. and Wilson, I.A. (2005) Molecular mechanism of lipopeptide presentation by CD1a. Immunity, 22, 209-219.
Zajonc, D.M., Elsliger, M.A., Teyton, L. and Wilson, I.A. (2003) Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å. Nat. Immunol., 4, 808-815.
Zavitz, K.H., DiGate, R.J. and Marians, K.J. (1991) The priB and priC replication proteins of Escherichia coli. Genes, DNA sequence, overexpression, and purification. J. Biol. Chem., 266, 13988-13995.
Zavitz, K.H. and Marians, K.J. (1993) Helicase-deficient cysteine to glycine substitution mutants of Escherichia coli replication protein PriA retain single-stranded DNA-dependent ATPase activity. Zn2+ stimulation of mutant PriA helicase and primosome assembly activities. J. Biol. Chem., 268, 4337-4346.
Zorko, M. and Langel, U. (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug Deliv. Rev., 57, 529-545.
Zusman, N., Cafmeyer, N. and Hudson, R.A. (1982) Use of erythrocyte hemolysis kinetics in the purification of complex cardiotoxin mixtures. Toxicon, 20, 517-520.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊