跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 20:26
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

Author my cdr record
 
twitterline
Author:王惠君
Author (Eng.):Hui-Chun Wang
Title:ATM與Chk2調控BRCA1在DNA雙股鏈斷之末端黏合修復的功能
Title (Eng.):ATM and Chk2 regulate BRCA1 in DNA end-joining repair of double strand breaks
Advisor:沈志陽沈志陽 author reflink
advisor (eng):Chen-Yang Shen
degree:Ph.D
Institution:國防醫學院
Department:生命科學研究所
Narrow Field:生命科學學門
Detailed Field:生物學類
Types of papers:Academic thesis/ dissertation
Publication Year:2006
Graduated Academic Year:94
language:Chinese
number of pages:70
keyword (chi):基因修復基因雙股鏈斷反應抑癌基因細胞週期
keyword (eng):BRCA1ATMChk2DNA repair
Ncl record status:
  • Cited Cited :0
  • HitsHits:1193
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:0
DNA損傷反應活化細胞週期檢查點(checkpoint)的目的在將細胞週期停止,以利細胞做DNA修復或在無法修復後決定細胞凋亡。過去許多對於活化checkpoint研究,闡明DNA損傷檢查點將細胞週期停止的機制,但是對於checkpoint如何將訊息傳達到修復系統的機制卻不明確。DNA雙股鏈斷(DSB)修復主要以同源性重組(HR)和非同源性末端黏合(NHEJ)兩種方式修復,這兩種修復方式互相合作也互相競爭,共同維護細胞基因體的穩定性。在哺乳類細胞會以NHEJ修復大部分的DSB,但是這種方式修復的結果會有DNA序列變異可能性。所以假設NHEJ並不單純僅是直接做末端黏合,可能有另一種NHEJ路徑存在,這條路徑會使DSB末端以精確的NHEJ修復。ATM與Chk2是DNA DSB損傷反應最重要的checkpoint,最近的研究發現ATM與Chk2依賴性的BRCA1磷酸化會促進細胞以HR的方式做精確性的修復DNA DSB,因此,合理的假設checkpoint蛋白ATM與Chk2也會透過BRCA1降低NHEJ修復的所帶來的錯誤,讓NHEJ修復能夠更加精確而預防基因變異。
本篇論文以細胞內修復線性plasmid DNA為實驗模式測試NHEJ活性,目的是為了探究ATM與Chk2是否調控BRCA1以促進NHEJ修復的精確性。根據實驗觀察,在有BRCA1表現的MCF-7細胞中,降低ATM或Chk2表現會影響NHEJ的活性;在BRCA1缺陷的HCC1937細胞中,恢復表現Chk2無法發揮磷酸化作用的BRCA1變異株並沒有增加NHEJ修復的精確性,相反的,恢復表現正常的BRCA1或模擬Chk2磷酸化作用的BRCA1變異株可以增加NHEJ修復的精確性;而細胞表現不具磷酸激酶活性的Chk2變異株或ATM無法發揮磷酸化作用的Chk2變異株都會負性優勢影響MCF-7細胞NHEJ修復的精確性。這些結果顯示調控HR修復的Checkpoint蛋白ATM和Chk2,會一起調控BRCA1而控制NHEJ以精確性的方式修復。
Homologous recombination (HR) and non-homologous end-joining (NHEJ) are the two mechanisms responsible for repairing DNA double strand breaks (DSBs) and act in either a collaborative or competitive manner in mammalian cells. DSB repaired by NHEJ, may be more complicated than the simple joining of the ends of DSB, since, if nucleotides were lost, it would result in error-prone repair. This has led to the proposal that a subpathway of precise NHEJ exists which can repair DSBs with higher fidelity; this is supported by recent findings that the expression of the HR gene, BRCA1, is causally linked to in vitro and in vivo precise NHEJ activity. To further delineate this mechanism, the present study explored the connection between NHEJ and the cell-cycle checkpoint proteins, ATM and Chk2, known to be involved in activating BRCA1, and tested the hypothesis that ATM and Chk2 promote precise end-joining by BRCA1. Support for this hypothesis came from the observations that (a) knock-down of ATM and Chk2 expression affected end-joining activity; (b) in BRCA1-defective cells, precise end-joining activity was not restored by a BRCA1 mutant lacking the site phosphorylated by Chk2, but was restored by wild-type BRCA1 or a mutant mimicking phosphorylation by Chk2, (c) Chk2 mutants lacking kinase activity or with a mutation at a site phosphorylated by ATM had a dominant negative effect on precise end-joining in BRCA1-expressing cells. These results suggest that the other two HR-regulatory proteins, ATM and Chk2, act jointly to regulate the activity of BRCA1 in controlling the fidelity of DNA end-joining by precise NHEJ.
正文目錄 頁
第一章 緒言…………………………………………………………………………1
第一節 文獻探討………………………………………………………………1
壹、基因變異與癌症…………………………………………………………1
貳、DNA雙股鏈斷損傷反應機制與癌症………………………………………7
參、DNA雙股鏈斷損傷修復機制…………………………………………10
肆、DNA雙股鏈斷損傷反應之訊號傳遞……………………………………18
伍、DNA雙股鏈斷損傷反應與修復系統之訊號傳遞連結…………………23
第二節 研究目的…………………………………………………………………28
第二章 材料與方法…………………………………………………………………29
第一節 細胞培養………………………………………………………………………29
第二節 基因表現質體與點突變……………………………………………………29
第三節 核醣核酸干擾技術與基因轉殖……………………………………………30
第四節 細胞IR損傷敏感性試驗……………………………………………………31
第五節 免疫轉漬分析法………………………………………………………………32
第六節 細胞內DNA末端黏合試驗………………………………………………33
第三章 結果…………………………………………………………………………37
第一節 以siRNA抑制MCF-7細胞之ATM、Chk2和BRCA1表現……………37
第二節 ATM、Chk2和BRCA1影響細胞內NHEJ活性………………………38
第三節 BRCA1促進Precise NHEJ與Chk2的訊息傳遞有關………………40
第四節 ATM磷酸化活化Chk2與促進正確性的NHEJ有關……………………41
第五節 Chk2透過調控BRCA1參與NHEJ………………………………………42
第六節 ATM透過調控BRCA1參與NHEJ…………………………………43
第四章 討論…………………………………………………………………..……55
第一節 研究發現的重要性……………………………………………………55
第二節 HR與NHEJ修復路徑的互動關係…………………………………56
第三節 假說模式………………………………………………………………57
第四節 限制酶處理之DNA斷鏈末端黏合之錯誤修復的可能性…………58
第五節 Chk2參與NHEJ的可能機制…………………………………………60
第六節 ATM參與NHEJ的可能機制……………………………………………63
第七節 討論細胞內修復限制酶處理之DNA末端重新黏合試驗模式……67
第五章 結論………………………………………………………………………70
第六章 參考文獻……………………………………………………………………71

『圖』目錄 頁

圖1 以siRNA抑制MCF-7細胞表現ATM、BRCA1或Chk2…………………………46
圖2 ATM、BRCA1及Chk2的siRNA影響細胞內NHEJ活性……………………47
圖3 PCR-RFLP法試驗ATM、BRCA1及Chk2的siRNA影響細胞內Precise NHEJ活性……………………………………………………………………………………48
圖4 BRCA1參與NHEJ受到PI3-kinase調控…………………………………………49
圖5 BRCA1轉殖於HCC1937細胞可以恢復 NHEJ活性…………………………50
圖6 不同Chk2變異株對MCF-7細胞之NHEJ的優勢效應影響……………………51
圖7 Chk2透過對BRCA1-Ser988磷酸化而促進NHEJ活性……………………52
圖8 降低ATM表現影響BRCA1促進Precise NHEJ…………………………………53
圖9 假說模式………………………………………………………………………54
(1)Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000 Jan 7;100(1):57-70.
(2)Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001 May 17;411(6835):342-8.
(3)Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998 Dec 17;396(6712):643-9.
(4)Frank SA. Genetic predisposition to cancer - insights from population genetics. Nat Rev Genet 2004 Oct;5(10):764-72.
(5)Kuppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 2005 Apr;5(4):251-62.
(6)Reed JC, Cuddy M, Slabiak T, Croce CM, Nowell PC. Oncogenic potential of bcl-2 demonstrated by gene transfer. Nature 1988 Nov 17;336(6196):259-61.
(7)Meng S, Tripathy D, Shete S, Ashfaq R, Haley B, Perkins S, et al. HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci U S A 2004 Jun 22;101(25):9393-8.
(8)Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001 Mar 15;344(11):783-92.
(9)Knudson AG, Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971 Apr;68(4):820-3.
(10)Knudson AG, Jr., Hethcote HW, Brown BW. Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma. Proc Natl Acad Sci U S A 1975 Dec;72(12):5116-20.
(11)Lasko D, Cavenee W, Nordenskjold M. Loss of constitutional heterozygosity in human cancer. Annu Rev Genet 1991;25:281-314.
(12)Lo YL, Yu JC, Huang CS, Tseng SL, Chang TM, Chang KJ, et al. Allelic loss of the BRCA1 and BRCA2 genes and other regions on 17q and 13q in breast cancer among women from Taiwan (area of low incidence but early onset). Int J Cancer 1998 Dec 18;79(6):580-7.
(13)Momparler RL. Cancer epigenetics. Oncogene 2003 Sep 29;22(42):6479-83.
(14)Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999 Feb;21(2):163-7.
(15)Laird PW. Cancer epigenetics. Hum Mol Genet 2005 Apr 15;14 Spec No 1:R65-R76.
(16)Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 2006 Jan;6(1):38-51.
(17)Fu YP, Yu JC, Cheng TC, Lou MA, Hsu GC, Wu CY, et al. Breast cancer risk associated with genotypic polymorphism of the nonhomologous end-joining genes: a multigenic study on cancer susceptibility. Cancer Res 2003 May 15;63(10):2440-6.
(18)Balmain A, Gray J, Ponder B. The genetics and genomics of cancer. Nat Genet 2003 Mar;33 Suppl:238-44.
(19)Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 2002 Nov;32(3):355-7.
(20)Hunter DJ, Riboli E, Haiman CA, Albanes D, Altshuler D, Chanock SJ, et al. A candidate gene approach to searching for low-penetrance breast and prostate cancer genes. Nat Rev Cancer 2005 Dec;5(12):977-85.
(21)Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997 Apr 24;386(6627):761, 763.
(22)Kinzler KW, Vogelstein B. Landscaping the cancer terrain. Science 1998 May 15;280(5366):1036-7.
(23)Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990 Jun 1;61(5):759-67.
(24)Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, et al. APC mutations occur early during colorectal tumorigenesis. Nature 1992 Sep 17;359(6392):235-7.
(25)Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996 Oct 18;87(2):159-70.
(26)Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. Creation of human tumour cells with defined genetic elements. Nature 1999 Jul 29;400(6743):464-8.
(27)Hahn WC, Weinberg RA. Rules for making human tumor cells. N Engl J Med 2002 Nov 14;347(20):1593-603.
(28)Rangarajan A, Hong SJ, Gifford A, Weinberg RA. Species- and cell type-specific requirements for cellular transformation. Cancer Cell 2004 Aug;6(2):171-83.
(29)Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005 Aug 4;436(7051):725-30.
(30)Fodde R, Smits R. Cancer biology. A matter of dosage. Science 2002 Oct 25;298(5594):761-3.
(31)Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 1991 Jun 15;51(12):3075-9.
(32)Loeb LA. A mutator phenotype in cancer. Cancer Res 2001 Apr 15;61(8):3230-9.
(33)Machida YJ, Dutta A. Cellular checkpoint mechanisms monitoring proper initiation of DNA replication. J Biol Chem 2005 Feb 25;280(8):6253-6.
(34)Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science 1996 Dec 6;274(5293):1664-72.
(35)Kastan MB, Lim DS. The many substrates and functions of ATM. Nat Rev Mol Cell Biol 2000 Dec;1(3):179-86.
(36)Nghiem P, Park PK, Kim Y, Vaziri C, Schreiber SL. ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc Natl Acad Sci U S A 2001 Jul 31;98(16):9092-7.
(37)Bellacosa A. Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ 2001 Nov;8(11):1076-92.
(38)Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001 May 17;411(6835):366-74.
(39)O'Driscoll M, Jeggo PA. The role of double-strand break repair - insights from human genetics. Nat Rev Genet 2006 Jan;7(1):45-54.
(40)Malkin D, Li FP, Strong LC, Fraumeni JF, Jr., Nelson CE, Kim DH, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990 Nov 30;250(4985):1233-8.
(41)Varley JM. Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 2003 Mar;21(3):313-20.
(42)Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 2003 Mar;3(3):155-68.
(43)Narod SA, Foulkes WD. BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 2004 Sep;4(9):665-76.
(44)Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 1999 Dec 24;286(5449):2528-31.
(45)Meijers-Heijboer H, van den OA, Klijn J, Wasielewski M, de SA, Oldenburg R, et al. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 2002 May;31(1):55-9.
(46)Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 1998 May 1;93(3):467-76.
(47)Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG, et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 1999 Dec 10;99(6):577-87.
(48)Carney JP, Maser RS, Olivares H, Davis EM, Le BM, Yates JR, III, et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 1998 May 1;93(3):477-86.
(49)Lee JH, Paull TT. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 2004 Apr 2;304(5667):93-6.
(50)Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 2005 Apr 22;308(5721):551-4.
(51)Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005 Apr 14;434(7035):864-70.
(52)Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005 Apr 14;434(7035):907-13.
(53)Joshi G, Sultana R, Tangpong J, Cole MP, St Clair DK, Vore M, et al. Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: insight into chemobrain. Free Radic Res 2005 Nov;39(11):1147-54.
(54)Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 2004 Jul 8;351(2):145-53.
(55)Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 1984 Oct 26;226(4673):466-8.
(56)Ismail IH, Nystrom S, Nygren J, Hammarsten O. Activation of ataxia telangiectasia mutated by DNA strand break-inducing agents correlates closely with the number of DNA double strand breaks. J Biol Chem 2005 Feb 11;280(6):4649-55.
(57)Froelich-Ammon SJ, Osheroff N. Topoisomerase poisons: harnessing the dark side of enzyme mechanism. J Biol Chem 1995 Sep 15;270(37):21429-32.
(58)Mukhopadhyay UK, Senderowicz AM, Ferbeyre G. RNA silencing of checkpoint regulators sensitizes p53-defective prostate cancer cells to chemotherapy while sparing normal cells. Cancer Res 2005 Apr 1;65(7):2872-81.
(59)Li HR, Shagisultanova EI, Yamashita K, Piao Z, Perucho M, Malkhosyan SR. Hypersensitivity of tumor cell lines with microsatellite instability to DNA double strand break producing chemotherapeutic agent bleomycin. Cancer Res 2004 Jul 15;64(14):4760-7.
(60)Haince JF, Rouleau M, Hendzel MJ, Masson JY, Poirier GG. Targeting poly(ADP-ribosyl)ation: a promising approach in cancer therapy. Trends Mol Med 2005 Oct;11(10):456-63.
(61)Fedier A, Schlamminger M, Schwarz VA, Haller U, Howell SB, Fink D. Loss of atm sensitises p53-deficient cells to topoisomerase poisons and antimetabolites. Ann Oncol 2003 Jun;14(6):938-45.
(62)Willmore E, de CS, Sunter NJ, Tilby MJ, Jackson GH, Austin CA, et al. A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood 2004 Jun 15;103(12):4659-65.
(63)Lambert JM. Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol 2005 Oct;5(5):543-9.
(64)Allan JM, Travis LB. Mechanisms of therapy-related carcinogenesis. Nat Rev Cancer 2005 Dec;5(12):943-55.
(65)Thompson LH, Jeggo PA. Nomenclature of human genes involved in ionizing radiation sensitivity. Mutat Res 1995 Sep;337(2):131-4.
(66)Jeggo PA, Tesmer J, Chen DJ. Genetic analysis of ionising radiation sensitive mutants of cultured mammalian cell lines. Mutat Res 1991 Mar;254(2):125-33.
(67)Thacker J, Zdzienicka MZ. The mammalian XRCC genes: their roles in DNA repair and genetic stability. DNA Repair (Amst) 2003 Jun 11;2(6):655-72.
(68)Prakash S, Prakash L. Nucleotide excision repair in yeast. Mutat Res 2000 Jun 30;451(1-2):13-24.
(69)Prakash S, Johnson RE, Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 2005;74:317-53.
(70)Ulrich HD. The RAD6 pathway: control of DNA damage bypass and mutagenesis by ubiquitin and SUMO. Chembiochem 2005 Oct;6(10):1735-43.
(71)Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002 Dec;66(4):630-70, table.
(72)Rothkamm K, Kruger I, Thompson LH, Lobrich M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 2003 Aug;23(16):5706-15.
(73)Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998 Sep 15;17(18):5497-508.
(74)Couedel C, Mills KD, Barchi M, Shen L, Olshen A, Johnson RD, et al. Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 2004 Jun 1;18(11):1293-304.
(75)Letavayova L, Markova E, Hermanska K, Vlckova V, Vlasakova D, Chovanec M, et al. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae. DNA Repair (Amst) 2006 Feb 28.
(76)Kanaar R, Hoeijmakers JH, van G. Molecular mechanisms of DNA double strand break repair. Trends Cell Biol 1998 Dec;8(12):483-9.
(77)Liang F, Han M, Romanienko PJ, Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A 1998 Apr 28;95(9):5172-7.
(78)Golding SE, Rosenberg E, Khalil A, McEwen A, Holmes M, Neill S, et al. Double strand break repair by homologous recombination is regulated by cell cycle-independent signaling via ATM in human glioma cells. J Biol Chem 2004 Apr 9;279(15):15402-10.
(79)Jeggo PA. DNA breakage and repair. Adv Genet 1998;38:185-218.
(80)Lees-Miller SP, Meek K. Repair of DNA double strand breaks by non-homologous end joining. Biochimie 2003 Nov;85(11):1161-73.
(81)Critchlow SE, Jackson SP. DNA end-joining: from yeast to man. Trends Biochem Sci 1998 Oct;23(10):394-8.
(82)Karran P. DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 2000 Apr;10(2):144-50.
(83)Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002 May;23(5):687-96.
(84)Johnson RD, Jasin M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J 2000 Jul 3;19(13):3398-407.
(85)Kadyk LC, Hartwell LH. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 1992 Oct;132(2):387-402.
(86)Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell 1983 May;33(1):25-35.
(87)Paull TT, Gellert M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 1999 May 15;13(10):1276-88.
(88)Paull TT, Gellert M. The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1998 Jun;1(7):969-79.
(89)Trujillo KM, Yuan SS, Lee EY, Sung P. Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J Biol Chem 1998 Aug 21;273(34):21447-50.
(90)Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 2003 Sep 1;22(37):5792-812.
(91)Haber JE. The many interfaces of Mre11. Cell 1998 Nov 25;95(5):583-6.
(92)Benson FE, Stasiak A, West SC. Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. EMBO J 1994 Dec 1;13(23):5764-71.
(93)New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 1998 Jan 22;391(6665):407-10.
(94)New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 1998 Jan 22;391(6665):407-10.
(95)Mazin AV, Bornarth CJ, Solinger JA, Heyer WD, Kowalczykowski SC. Rad54 protein is targeted to pairing loci by the Rad51 nucleoprotein filament. Mol Cell 2000 Sep;6(3):583-92.
(96)Solinger JA, Heyer WD. Rad54 protein stimulates the postsynaptic phase of Rad51 protein-mediated DNA strand exchange. Proc Natl Acad Sci U S A 2001 Jul 17;98(15):8447-53.
(97)Solinger JA, Lutz G, Sugiyama T, Kowalczykowski SC, Heyer WD. Rad54 protein stimulates heteroduplex DNA formation in the synaptic phase of DNA strand exchange via specific interactions with the presynaptic Rad51 nucleoprotein filament. J Mol Biol 2001 Apr 13;307(5):1207-21.
(98)Sung P. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 1997 May 1;11(9):1111-21.
(99)Lio YC, Mazin AV, Kowalczykowski SC, Chen DJ. Complex formation by the human Rad51B and Rad51C DNA repair proteins and their activities in vitro. J Biol Chem 2003 Jan 24;278(4):2469-78.
(100)Masson JY, Tarsounas MC, Stasiak AZ, Stasiak A, Shah R, McIlwraith MJ, et al. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev 2001 Dec 15;15(24):3296-307.
(101)Sigurdsson S, Van KS, Bussen W, Schild D, Albala JS, Sung P. Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev 2001 Dec 15;15(24):3308-18.
(102)Sugawara N, Wang X, Haber JE. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 2003 Jul;12(1):209-19.
(103)Petukhova G, Van KS, Vergano S, Klein H, Sung P. Yeast Rad54 promotes Rad51-dependent homologous DNA pairing via ATP hydrolysis-driven change in DNA double helix conformation. J Biol Chem 1999 Oct 8;274(41):29453-62.
(104)Dronkert ML, Beverloo HB, Johnson RD, Hoeijmakers JH, Jasin M, Kanaar R. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol Cell Biol 2000 May;20(9):3147-56.
(105)Swagemakers SM, Essers J, de WJ, Hoeijmakers JH, Kanaar R. The human RAD54 recombinational DNA repair protein is a double-stranded DNA-dependent ATPase. J Biol Chem 1998 Oct 23;273(43):28292-7.
(106)Onclercq-Delic R, Calsou P, Delteil C, Salles B, Papadopoulo D, mor-Gueret M. Possible anti-recombinogenic role of Bloom's syndrome helicase in double-strand break processing. Nucleic Acids Res 2003 Nov 1;31(21):6272-82.
(107)So S, Adachi N, Lieber MR, Koyama H. Genetic interactions between BLM and DNA ligase IV in human cells. J Biol Chem 2004 Dec 31;279(53):55433-42.
(108)Aylon Y, Kupiec M. New insights into the mechanism of homologous recombination in yeast. Mutat Res 2004 May;566(3):231-48.
(109)Karow JK, Constantinou A, Li JL, West SC, Hickson ID. The Bloom's syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci U S A 2000 Jun 6;97(12):6504-8.
(110)Wu L, Hickson ID. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 2003 Dec 18;426(6968):870-4.
(111)Lin FL, Sperle K, Sternberg N. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol Cell Biol 1984 Jun;4(6):1020-34.
(112)Van DE, Stasiak AZ, Stasiak A, West SC. Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing. EMBO Rep 2001 Oct;2(10):905-9.
(113)Malkova A, Ivanov EL, Haber JE. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci U S A 1996 Jul 9;93(14):7131-6.
(114)Wu Y, Sugiyama T, Kowalczykowski SC. DNA annealing mediated by rad52 and rad59 proteins. J Biol Chem 2006 Mar 25.
(115)Sargent RG, Meservy JL, Perkins BD, Kilburn AE, Intody Z, Adair GM, et al. Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells. Nucleic Acids Res 2000 Oct 1;28(19):3771-8.
(116)Gottlich B, Reichenberger S, Feldmann E, Pfeiffer P. Rejoining of DNA double-strand breaks in vitro by single-strand annealing. Eur J Biochem 1998 Dec 1;258(2):387-95.
(117)Paull TT, Gellert M. A mechanistic basis for Mre11-directed DNA joining at microhomologies. Proc Natl Acad Sci U S A 2000 Jun 6;97(12):6409-14.
(118)Huang S, Beresten S, Li B, Oshima J, Ellis NA, Campisi J. Characterization of the human and mouse WRN 3'-->5' exonuclease. Nucleic Acids Res 2000 Jun 15;28(12):2396-405.
(119)Sharma S, Sommers JA, Gary RK, Friedrich-Heineken E, Hubscher U, Brosh RM, Jr. The interaction site of Flap Endonuclease-1 with WRN helicase suggests a coordination of WRN and PCNA. Nucleic Acids Res 2005;33(21):6769-81.
(120)Chen S, Inamdar KV, Pfeiffer P, Feldmann E, Hannah MF, Yu Y, et al. Accurate in vitro end joining of a DNA double strand break with partially cohesive 3'-overhangs and 3'-phosphoglycolate termini: effect of Ku on repair fidelity. J Biol Chem 2001 Jun 29;276(26):24323-30.
(121)Lieber MR, Hesse JE, Lewis S, Bosma GC, Rosenberg N, Mizuuchi K, et al. The defect in murine severe combined immune deficiency: joining of signal sequences but not coding segments in V(D)J recombination. Cell 1988 Oct 7;55(1):7-16.
(122)Lieber MR. The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells 1999 Feb;4(2):77-85.
(123)Suwa A, Hirakata M, Takeda Y, Jesch SA, Mimori T, Hardin JA. DNA-dependent protein kinase (Ku protein-p350 complex) assembles on double-stranded DNA. Proc Natl Acad Sci U S A 1994 Jul 19;91(15):6904-8.
(124)Yant SR, Kay MA. Nonhomologous-end-joining factors regulate DNA repair fidelity during Sleeping Beauty element transposition in mammalian cells. Mol Cell Biol 2003 Dec;23(23):8505-18.
(125)DeFazio LG, Stansel RM, Griffith JD, Chu G. Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J 2002 Jun 17;21(12):3192-200.
(126)Chan DW, Ye R, Veillette CJ, Lees-Miller SP. DNA-dependent protein kinase phosphorylation sites in Ku 70/80 heterodimer. Biochemistry 1999 Feb 9;38(6):1819-28.
(127)Leber R, Wise TW, Mizuta R, Meek K. The XRCC4 gene product is a target for and interacts with the DNA-dependent protein kinase. J Biol Chem 1998 Jan 16;273(3):1794-801.
(128)Yannone SM, Roy S, Chan DW, Murphy MB, Huang S, Campisi J, et al. Werner syndrome protein is regulated and phosphorylated by DNA-dependent protein kinase. J Biol Chem 2001 Oct 12;276(41):38242-8.
(129)Karmakar P, Piotrowski J, Brosh RM, Jr., Sommers JA, Miller SP, Cheng WH, et al. Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. J Biol Chem 2002 May 24;277(21):18291-302.
(130)Ma Y, Pannicke U, Schwarz K, Lieber MR. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 2002 Mar 22;108(6):781-94.
(131)Ma Y, Pannicke U, Lu H, Niewolik D, Schwarz K, Lieber MR. The DNA-dependent protein kinase catalytic subunit phosphorylation sites in human Artemis. J Biol Chem 2005 Oct 7;280(40):33839-46.
(132)Mukherjee B, Kessinger C, Kobayashi J, Chen BP, Chen DJ, Chatterjee A, et al. DNA-PK phosphorylates histone H2AX during apoptotic DNA fragmentation in mammalian cells. DNA Repair (Amst) 2006 Mar 24.
(133)Ding Q, Reddy YV, Wang W, Woods T, Douglas P, Ramsden DA, et al. Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 2003 Aug;23(16):5836-48.
(134)Cui X, Yu Y, Gupta S, Cho YM, Lees-Miller SP, Meek K. Autophosphorylation of DNA-dependent protein kinase regulates DNA end processing and may also alter double-strand break repair pathway choice. Mol Cell Biol 2005 Dec;25(24):10842-52.
(135)Reddy YV, Ding Q, Lees-Miller SP, Meek K, Ramsden DA. Non-homologous end joining requires that the DNA-PK complex undergo an autophosphorylation-dependent rearrangement at DNA ends. J Biol Chem 2004 Sep 17;279(38):39408-13.
(136)Moshous D, Callebaut I, de CR, Corneo B, Cavazzana-Calvo M, Le DF, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 2001 Apr 20;105(2):177-86.
(137)Hefferin ML, Tomkinson AE. Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair (Amst) 2005 Jun 8;4(6):639-48.
(138)Jeggo PA, Lobrich M. Artemis links ATM to double strand break rejoining. Cell Cycle 2005 Mar;4(3):359-62.
(139)Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ, et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 2004 Dec 3;16(5):715-24.
(140)Li B, Comai L. Functional interaction between Ku and the werner syndrome protein in DNA end processing. J Biol Chem 2000 Sep 15;275(37):28349-52.
(141)Li B, Comai L. Requirements for the nucleolytic processing of DNA ends by the Werner syndrome protein-Ku70/80 complex. J Biol Chem 2001 Mar 30;276(13):9896-902.
(142)Cooper MP, Machwe A, Orren DK, Brosh RM, Ramsden D, Bohr VA. Ku complex interacts with and stimulates the Werner protein. Genes Dev 2000 Apr 15;14(8):907-12.
(143)Orren DK, Machwe A, Karmakar P, Piotrowski J, Cooper MP, Bohr VA. A functional interaction of Ku with Werner exonuclease facilitates digestion of damaged DNA. Nucleic Acids Res 2001 May 1;29(9):1926-34.
(144)Hosfield DJ, Mol CD, Shen B, Tainer JA. Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell 1998 Oct 2;95(1):135-46.
(145)Wu X, Li J, Li X, Hsieh CL, Burgers PM, Lieber MR. Processing of branched DNA intermediates by a complex of human FEN-1 and PCNA. Nucleic Acids Res 1996 Jun 1;24(11):2036-43.
(146)Tseng HM, Tomkinson AE. Processing and joining of DNA ends coordinated by interactions among Dnl4/Lif1, Pol4, and FEN-1. J Biol Chem 2004 Nov 12;279(46):47580-8.
(147)Wu X, Wilson TE, Lieber MR. A role for FEN-1 in nonhomologous DNA end joining: the order of strand annealing and nucleolytic processing events. Proc Natl Acad Sci U S A 1999 Feb 16;96(4):1303-8.
(148)Pospiech H, Rytkonen AK, Syvaoja JE. The role of DNA polymerase activity in human non-homologous end joining. Nucleic Acids Res 2001 Aug 1;29(15):3277-88.
(149)Wilson TE, Lieber MR. Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway. J Biol Chem 1999 Aug 13;274(33):23599-609.
(150)Ma Y, Lu H, Tippin B, Goodman MF, Shimazaki N, Koiwai O, et al. A biochemically defined system for mammalian nonhomologous DNA end joining. Mol Cell 2004 Dec 3;16(5):701-13.
(151)Mahajan KN, Nick McElhinny SA, Mitchell BS, Ramsden DA. Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair. Mol Cell Biol 2002 Jul;22(14):5194-202.
(152)Lee JW, Blanco L, Zhou T, Garcia-Diaz M, Bebenek K, Kunkel TA, et al. Implication of DNA polymerase lambda in alignment-based gap filling for nonhomologous DNA end joining in human nuclear extracts. J Biol Chem 2004 Jan 2;279(1):805-11.
(153)Mahajan KN, Gangi-Peterson L, Sorscher DH, Wang J, Gathy KN, Mahajan NP, et al. Association of terminal deoxynucleotidyl transferase with Ku. Proc Natl Acad Sci U S A 1999 Nov 23;96(24):13926-31.
(154)Purugganan MM, Shah S, Kearney JF, Roth DB. Ku80 is required for addition of N nucleotides to V(D)J recombination junctions by terminal deoxynucleotidyl transferase. Nucleic Acids Res 2001 Apr 1;29(7):1638-46.
(155)Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell 2002 Apr;109 Suppl:S45-S55.
(156)de Villartay JP, Fischer A, Durandy A. The mechanisms of immune diversification and their disorders. Nat Rev Immunol 2003 Dec;3(12):962-72.
(157)Yu X, Gabriel A. Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae. Genetics 2003 Mar;163(3):843-56.
(158)Ben-Omran TI, Cerosaletti K, Concannon P, Weitzman S, Nezarati MM. A patient with mutations in DNA Ligase IV: clinical features and overlap with Nijmegen breakage syndrome. Am J Med Genet A 2005 Sep 1;137(3):283-7.
(159)O'Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B, et al. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 2001 Dec;8(6):1175-85.
(160)Frank KM, Sharpless NE, Gao Y, Sekiguchi JM, Ferguson DO, Zhu C, et al. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol Cell 2000 Jun;5(6):993-1002.
(161)Frank KM, Sekiguchi JM, Seidl KJ, Swat W, Rathbun GA, Cheng HL, et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 1998 Nov 12;396(6707):173-7.
(162)Wilson TE, Grawunder U, Lieber MR. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 1997 Jul 31;388(6641):495-8.
(163)Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M, et al. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 1997 Jul 31;388(6641):492-5.
(164)Critchlow SE, Bowater RP, Jackson SP. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 1997 Aug 1;7(8):588-98.
(165)Grawunder U, Zimmer D, Fugmann S, Schwarz K, Lieber MR. DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. Mol Cell 1998 Oct;2(4):477-84.
(166)Grawunder U, Zimmer D, Kulesza P, Lieber MR. Requirement for an interaction of XRCC4 with DNA ligase IV for wild-type V(D)J recombination and DNA double-strand break repair in vivo. J Biol Chem 1998 Sep 18;273(38):24708-14.
(167)Bryans M, Valenzano MC, Stamato TD. Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat Res 1999 Jan 26;433(1):53-8.
(168)Modesti M, Hesse JE, Gellert M. DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity. EMBO J 1999 Apr 1;18(7):2008-18.
(169)Calsou P, Delteil C, Frit P, Drouet J, Salles B. Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. J Mol Biol 2003 Feb 7;326(1):93-103.
(170)Wang H, Zeng ZC, Perrault AR, Cheng X, Qin W, Iliakis G. Genetic evidence for the involvement of DNA ligase IV in the DNA-PK-dependent pathway of non-homologous end joining in mammalian cells. Nucleic Acids Res 2001 Apr 15;29(8):1653-60.
(171)Drouet J, Delteil C, Lefrancois J, Concannon P, Salles B, Calsou P. DNA-dependent protein kinase and XRCC4-DNA ligase IV mobilization in the cell in response to DNA double strand breaks. J Biol Chem 2005 Feb 25;280(8):7060-9.
(172)Hsu HL, Yannone SM, Chen DJ. Defining interactions between DNA-PK and ligase IV/XRCC4. DNA Repair (Amst) 2002 Mar 28;1(3):225-35.
(173)Meijer M, Karimi-Busheri F, Huang TY, Weinfeld M, Young D. Pnk1, a DNA kinase/phosphatase required for normal response to DNA damage by gamma-radiation or camptothecin in Schizosaccharomyces pombe. J Biol Chem 2002 Feb 8;277(6):4050-5.
(174)Chappell C, Hanakahi LA, Karimi-Busheri F, Weinfeld M, West SC. Involvement of human polynucleotide kinase in double-strand break repair by non-homologous end joining. EMBO J 2002 Jun 3;21(11):2827-32.
(175)Bernstein NK, Williams RS, Rakovszky ML, Cui D, Green R, Karimi-Busheri F, et al. The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase. Mol Cell 2005 Mar 4;17(5):657-70.
(176)Koch CA, Agyei R, Galicia S, Metalnikov P, O'Donnell P, Starostine A, et al. Xrcc4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligase IV. EMBO J 2004 Oct 1;23(19):3874-85.
(177)Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 2006 Jan 27;124(2):301-13.
(178)Callebaut I, Malivert L, Fischer A, Mornon JP, Revy P, de Villartay JP. Cernunnos interacts with the XRCC4/DNA-ligase IV complex and is homologous to the yeast nonhomologous end-joining factor NEJ1. J Biol Chem 2006 Mar 29.
(179)Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 2000 Nov 23;408(6811):433-9.
(180)Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 2001 Sep 1;15(17):2177-96.
(181)Lu X, Lane DP. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 1993 Nov 19;75(4):765-78.
(182)Khanna KK, Lavin MF. Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene 1993 Dec;8(12):3307-12.
(183)Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992 Nov 13;71(4):587-97.
(184)Khanna KK, Beamish H, Yan J, Hobson K, Williams R, Dunn I, et al. Nature of G1/S cell cycle checkpoint defect in ataxia-telangiectasia. Oncogene 1995 Aug 17;11(4):609-18.
(185)Artuso M, Esteve A, Bresil H, Vuillaume M, Hall J. The role of the Ataxia telangiectasia gene in the p53, WAF1/CIP1(p21)- and GADD45-mediated response to DNA damage produced by ionising radiation. Oncogene 1995 Oct 19;11(8):1427-35.
(186)Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997 May 15;387(6630):296-9.
(187)Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997 May 15;387(6630):299-303.
(188)Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995 Jun 23;268(5218):1749-53.
(189)Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998 Sep 11;281(5383):1674-7.
(190)Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998 Sep 11;281(5383):1677-9.
(191)Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K, et al. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat Genet 1998 Dec;20(4):398-400.
(192)Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci U S A 1999 Dec 21;96(26):14973-7.
(193)Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 1997 Oct 31;91(3):325-34.
(194)Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 1997 Dec 15;11(24):3471-81.
(195)Lakin ND, Hann BC, Jackson SP. The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene 1999 Jul 8;18(27):3989-95.
(196)Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 1999 Jan 15;13(2):152-7.
(197)Nghiem P, Park PK, Kim Ys YS, Desai BN, Schreiber SL. ATR is not required for p53 activation but synergizes with p53 in the replication checkpoint. J Biol Chem 2002 Feb 8;277(6):4428-34.
(198)Pereg Y, Shkedy D, de GP, Meulmeester E, Edelson-Averbukh M, Salek M, et al. Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. Proc Natl Acad Sci U S A 2005 Apr 5;102(14):5056-61.
(199)Chen L, Gilkes DM, Pan Y, Lane WS, Chen J. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J 2005 Oct 5;24(19):3411-22.
(200)Baer R, Ludwig T. The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity. Curr Opin Genet Dev 2002 Feb;12(1):86-91.
(201)Simons AM, Horwitz AA, Starita LM, Griffin K, Williams RS, Glover JN, et al. BRCA1 DNA-binding activity is stimulated by BARD1. Cancer Res 2006 Feb 15;66(4):2012-8.
(202)Westermark UK, Reyngold M, Olshen AB, Baer R, Jasin M, Moynahan ME. BARD1 participates with BRCA1 in homology-directed repair of chromosome breaks. Mol Cell Biol 2003 Nov;23(21):7926-36.
(203)Fabbro M, Savage K, Hobson K, Deans AJ, Powell SN, McArthur GA, et al. BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 2004 Jul 23;279(30):31251-8.
(204)Bartek J, Lukas C, Lukas J. Checking on DNA damage in S phase. Nat Rev Mol Cell Biol 2004 Oct;5(10):792-804.
(205)Painter RB, Young BR. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci U S A 1980 Dec;77(12):7315-7.
(206)Zhu Y, Alvarez C, Doll R, Kurata H, Schebye XM, Parry D, et al. Intra-S-phase checkpoint activation by direct CDK2 inhibition. Mol Cell Biol 2004 Jul;24(14):6268-77.
(207)Busino L, Chiesa M, Draetta GF, Donzelli M. Cdc25A phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene 2004 Mar 15;23(11):2050-6.
(208)Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001 Apr 12;410(6830):842-7.
(209)Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 2000 Apr 6;404(6778):613-7.
(210)Zhao S, Weng YC, Yuan SS, Lin YT, Hsu HC, Lin SC, et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 2000 May 25;405(6785):473-7.
(211)Gatei M, Young D, Cerosaletti KM, sai-Mehta A, Spring K, Kozlov S, et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 2000 May;25(1):115-9.
(212)Falck J, Petrini JH, Williams BR, Lukas J, Bartek J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet 2002 Mar;30(3):290-4.
(213)Gatei M, Sloper K, Sorensen C, Syljuasen R, Falck J, Hobson K, et al. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Biol Chem 2003 Apr 25;278(17):14806-11.
(214)Flaggs G, Plug AW, Dunks KM, Mundt KE, Ford JC, Quiggle MR, et al. Atm-dependent interactions of a mammalian chk1 homolog with meiotic chromosomes. Curr Biol 1997 Dec 1;7(12):977-86.
(215)Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 2000 Jun 15;14(12):1448-59.
(216)Zhao H, Piwnica-Worms H. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 2001 Jul;21(13):4129-39.
(217)Guo Z, Kumagai A, Wang SX, Dunphy WG. Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev 2000 Nov 1;14(21):2745-56.
(218)Zhao H, Watkins JL, Piwnica-Worms H. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci U S A 2002 Nov 12;99(23):14795-800.
(219)Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J, et al. Rapid destruction of human Cdc25A in response to DNA damage. Science 2000 May 26;288(5470):1425-9.
(220)Sorensen CS, Syljuasen RG, Falck J, Schroeder T, Ronnstrand L, Khanna KK, et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 2003 Mar;3(3):247-58.
(221)Bao S, Lu T, Wang X, Zheng H, Wang LE, Wei Q, et al. Disruption of the Rad9/Rad1/Hus1 (9-1-1) complex leads to checkpoint signaling and replication defects. Oncogene 2004 Jul 22;23(33):5586-93.
(222)Bermudez VP, Lindsey-Boltz LA, Cesare AJ, Maniwa Y, Griffith JD, Hurwitz J, et al. Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc Natl Acad Sci U S A 2003 Feb 18;100(4):1633-8.
(223)Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 2003 Feb 27;421(6926):961-6.
(224)Goldberg M, Stucki M, Falck J, D'Amours D, Rahman D, Pappin D, et al. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 2003 Feb 27;421(6926):952-6.
(225)Xu B, O'Donnell AH, Kim ST, Kastan MB. Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res 2002 Aug 15;62(16):4588-91.
(226)Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 2004 Jun 15;18(12):1423-38.
(227)Wang B, Matsuoka S, Carpenter PB, Elledge SJ. 53BP1, a mediator of the DNA damage checkpoint. Science 2002 Nov 15;298(5597):1435-8.
(228)Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY, Qin J. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev 2002 Mar 1;16(5):571-82.
(229)Mochan TA, Venere M, DiTullio RA, Jr., Halazonetis TD. 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res 2003 Dec 15;63(24):8586-91.
(230)Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A, et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 2006 Jan 20;21(2):187-200.
(231)Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 2005 Dec 29;123(7):1213-26.
(232)Lou Z, Chini CC, Minter-Dykhouse K, Chen J. Mediator of DNA damage checkpoint protein 1 regulates BRCA1 localization and phosphorylation in DNA damage checkpoint control. J Biol Chem 2003 Apr 18;278(16):13599-602.
(233)Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 2003 Jul;5(7):675-9.
(234)Ali A, Zhang J, Bao S, Liu I, Otterness D, Dean NM, et al. Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation. Genes Dev 2004 Feb 1;18(3):249-54.
(235)Zhang J, Bao S, Furumai R, Kucera KS, Ali A, Dean NM, et al. Protein phosphatase 5 is required for ATR-mediated checkpoint activation. Mol Cell Biol 2005 Nov;25(22):9910-9.
(236)Stark GR, Taylor WR. Analyzing the G2/M checkpoint. Methods Mol Biol 2004;280:51-82.
(237)Buscemi G, Savio C, Zannini L, Micciche F, Masnada D, Nakanishi M, et al. Chk2 activation dependence on Nbs1 after DNA damage. Mol Cell Biol 2001 Aug;21(15):5214-22.
(238)Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol 2002 Dec;4(12):993-7.
(239)Rappold I, Iwabuchi K, Date T, Chen J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J Cell Biol 2001 Apr 30;153(3):613-20.
(240)Schultz LB, Chehab NH, Malikzay A, Halazonetis TD. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 2000 Dec 25;151(7):1381-90.
(241)Ward IM, Minn K, Jorda KG, Chen J. Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J Biol Chem 2003 May 30;278(22):19579-82.
(242)Beamish H, Williams R, Chen P, Lavin MF. Defect in multiple cell cycle checkpoints in ataxia-telangiectasia postirradiation. J Biol Chem 1996 Aug 23;271(34):20486-93.
(243)Smits VA, Klompmaker R, Vallenius T, Rijksen G, Makela TP, Medema RH. p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J Biol Chem 2000 Sep 29;275(39):30638-43.
(244)Fan W, Jin S, Tong T, Zhao H, Fan F, Antinore MJ, et al. BRCA1 regulates GADD45 through its interactions with the OCT-1 and CAAT motifs. J Biol Chem 2002 Mar 8;277(10):8061-7.
(245)Jin S, Zhao H, Fan F, Blanck P, Fan W, Colchagie AB, et al. BRCA1 activation of the GADD45 promoter. Oncogene 2000 Aug 17;19(35):4050-7.
(246)Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC, et al. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 1999 May 6;18(18):2892-900.
(247)Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci U S A 1999 Mar 30;96(7):3706-11.
(248)Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ, et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev 2000 Dec 1;14(23):2989-3002.
(249)Gatei M, Zhou BB, Hobson K, Scott S, Young D, Khanna KK. Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies. J Biol Chem 2001 May 18;276(20):17276-80.
(250)Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 2002 Mar;30(3):285-9.
(251)Yan Y, Spieker RS, Kim M, Stoeger SM, Cowan KH. BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation. Oncogene 2005 May 5;24(20):3285-96.
(252)Bao S, Tibbetts RS, Brumbaugh KM, Fang Y, Richardson DA, Ali A, et al. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 2001 Jun 21;411(6840):969-74.
(253)Lin SY, Rai R, Li K, Xu ZX, Elledge SJ. BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proc Natl Acad Sci U S A 2005 Oct 18;102(42):15105-9.
(254)Zhang X, Succi J, Feng Z, Prithivirajsingh S, Story MD, Legerski RJ. Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol Cell Biol 2004 Oct;24(20):9207-20.
(255)D'Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 2003 Jan;3(1):23-34.
(256)Fei P, Yin J, Wang W. New advances in the DNA damage response network of Fanconi anemia and BRCA proteins. FAAP95 replaces BRCA2 as the true FANCB protein. Cell Cycle 2005 Jan;4(1):80-6.
(257)Al Rashid ST, Dellaire G, Cuddihy A, Jalali F, Vaid M, Coackley C, et al. Evidence for the direct binding of phosphorylated p53 to sites of DNA breaks in vivo. Cancer Res 2005 Dec 1;65(23):10810-21.
(258)Chen L, Morio T, Minegishi Y, Nakada S, Nagasawa M, Komatsu K, et al. Ataxia-telangiectasia-mutated dependent phosphorylation of Artemis in response to DNA damage. Cancer Sci 2005 Feb;96(2):134-41.
(259)Soubeyrand S, Pope L, De CR, Gosselin D, Dong F, de Villartay JP, et al. Artemis Phosphorylated by DNA-dependent Protein Kinase Associates Preferentially with Discrete Regions of Chromatin. J Mol Biol 2006 Mar 20.
(260)Lisby M, Rothstein R, Mortensen UH. Rad52 forms DNA repair and recombination centers during S phase. Proc Natl Acad Sci U S A 2001 Jul 17;98(15):8276-82.
(261)Lisby M, ntunez de MA, Mortensen UH, Rothstein R. Cell cycle-regulated centers of DNA double-strand break repair. Cell Cycle 2003 Sep;2(5):479-83.
(262)Xu X, Stern DF. NFBD1/MDC1 regulates ionizing radiation-induced focus formation by DNA checkpoint signaling and repair factors. FASEB J 2003 Oct;17(13):1842-8.
(263)Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye R, Moorhead GB, et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J 2004 Nov 10;23(22):4451-61.
(264)Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J. gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell 2005 Dec 9;20(5):801-9.
(265)Aten JA, Stap J, Krawczyk PM, van Oven CH, Hoebe RA, Essers J, et al. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 2004 Jan 2;303(5654):92-5.
(266)Andegeko Y, Moyal L, Mittelman L, Tsarfaty I, Shiloh Y, Rotman G. Nuclear retention of ATM at sites of DNA double strand breaks. J Biol Chem 2001 Oct 12;276(41):38224-30.
(267)Young DB, Jonnalagadda J, Gatei M, Jans DA, Meyn S, Khanna KK. Identification of domains of ataxia-telangiectasia mutated required for nuclear localization and chromatin association. J Biol Chem 2005 Jul 29;280(30):27587-94.
(268)Foray N, Arlett CF, Malaise EP. Dose-rate effect on induction and repair rate of radiation-induced DNA double-strand breaks in a normal and an ataxia telangiectasia human fibroblast cell line. Biochimie 1995;77(11):900-5.
(269)Foray N, Priestley A, Alsbeih G, Badie C, Capulas EP, Arlett CF, et al. Hypersensitivity of ataxia telangiectasia fibroblasts to ionizing radiation is associated with a repair deficiency of DNA double-strand breaks. Int J Radiat Biol 1997 Sep;72(3):271-83.
(270)Kuhne M, Riballo E, Rief N, Rothkamm K, Jeggo PA, Lobrich M. A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res 2004 Jan 15;64(2):500-8.
(271)Hsieh CL, Arlett CF, Lieber MR. V(D)J recombination in ataxia telangiectasia, Bloom's syndrome, and a DNA ligase I-associated immunodeficiency disorder. J Biol Chem 1993 Sep 25;268(27):20105-9.
(272)DiBiase SJ, Zeng ZC, Chen R, Hyslop T, Curran WJ, Jr., Iliakis G. DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res 2000 Mar 1;60(5):1245-53.
(273)Weibezahn KF, Coquerelle T. Radiation induced DNA double strand breaks are rejoined by ligation and recombination processes. Nucleic Acids Res 1981 Jul 10;9(13):3139-50.
(274)Wang H, Zeng ZC, Bui TA, Sonoda E, Takata M, Takeda S, et al. Efficient rejoining of radiation-induced DNA double-strand breaks in vertebrate cells deficient in genes of the RAD52 epistasis group. Oncogene 2001 Apr 26;20(18):2212-24.
(275)Lobrich M, Rydberg B, Cooper PK. Repair of x-ray-induced DNA double-strand breaks in specific Not I restriction fragments in human fibroblasts: joining of correct and incorrect ends. Proc Natl Acad Sci U S A 1995 Dec 19;92(26):12050-4.
(276)Nakamura H, Yasui Y, Saito N, Tachibana A, Komatsu K, Ishizaki K. DNA repair defect in AT cells and their hypersensitivity to low-dose-rate radiation. Radiat Res 2006 Mar;165(3):277-82.
(277)Myers JS, Cortez D. Rapid Activation of ATR by Ionizing Radiation Requires ATM and Mre11. J Biol Chem 2006 Apr 7;281(14):9346-50.
(278)Morrison C, Sonoda E, Takao N, Shinohara A, Yamamoto K, Takeda S. The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO J 2000 Feb 1;19(3):463-71.
(279)Yuan SS, Chang HL, Lee EY. Ionizing radiation-induced Rad51 nuclear focus formation is cell cycle-regulated and defective in both ATM(-/-) and c-Abl(-/-) cells. Mutat Res 2003 Apr 9;525(1-2):85-92.
(280)Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 2000 Apr 15;14(8):927-39.
(281)Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 1999 Nov 5;286(5442):1162-6.
(282)Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT, et al. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 2004 Jan;24(2):708-18.
(283)Lee JS, Collins KM, Brown AL, Lee CH, Chung JH. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 2000 Mar 9;404(6774):201-4.
(284)Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J, et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 1997 Aug 8;90(3):425-35.
(285)Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J, et al. Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science 1999 Jul 30;285(5428):747-50.
(286)Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001 Feb;7(2):249-62.
(287)Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 2000 Jul 27;10(15):886-95.
(288)Scully R, Ganesan S, Vlasakova K, Chen J, Socolovsky M, Livingston DM. Genetic analysis of BRCA1 function in a defined tumor cell line. Mol Cell 1999 Dec;4(6):1093-9.
(289)Moynahan ME, Chiu JW, Koller BH, Jasin M. Brca1 controls homology-directed DNA repair. Mol Cell 1999 Oct;4(4):511-8.
(290)Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 2001 Feb;7(2):263-72.
(291)Johnson RD, Liu N, Jasin M. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 1999 Sep 23;401(6751):397-9.
(292)Pierce AJ, Johnson RD, Thompson LH, Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 1999 Oct 15;13(20):2633-8.
(293)Kikuchi K, Taniguchi Y, Hatanaka A, Sonoda E, Hochegger H, Adachi N, et al. Fen-1 facilitates homologous recombination by removing divergent sequences at DNA break ends. Mol Cell Biol 2005 Aug;25(16):6948-55.
(294)Zhang J, Ma Z, Treszezamsky A, Powell SN. MDC1 interacts with Rad51 and facilitates homologous recombination. Nat Struct Mol Biol 2005 Oct;12(10):902-9.
(295)Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, et al. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 1997 Jan 24;88(2):265-75.
(296)Yuan SS, Lee SY, Chen G, Song M, Tomlinson GE, Lee EY. BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res 1999 Aug 1;59(15):3547-51.
(297)Bau DT, Fu YP, Chen ST, Cheng TC, Yu JC, Wu PE, et al. Breast cancer risk and the DNA double-strand break end-joining capacity of nonhomologous end-joining genes are affected by BRCA1. Cancer Res 2004 Jul 15;64(14):5013-9.
(298)Zhong Q, Boyer TG, Chen PL, Lee WH. Deficient nonhomologous end-joining activity in cell-free extracts from Brca1-null fibroblasts. Cancer Res 2002 Jul 15;62(14):3966-70.
(299)Zhong Q, Chen CF, Chen PL, Lee WH. BRCA1 facilitates microhomology-mediated end joining of DNA double strand breaks. J Biol Chem 2002 Aug 9;277(32):28641-7.
(300)Wang H, Zeng ZC, Bui TA, DiBiase SJ, Qin W, Xia F, et al. Nonhomologous end-joining of ionizing radiation-induced DNA double-stranded breaks in human tumor cells deficient in BRCA1 or BRCA2. Cancer Res 2001 Jan 1;61(1):270-7.
(301)Paull TT, Cortez D, Bowers B, Elledge SJ, Gellert M. Direct DNA binding by Brca1. Proc Natl Acad Sci U S A 2001 May 22;98(11):6086-91.
(302)Baldeyron C, Jacquemin E, Smith J, Jacquemont C, De O, I, Gad S, et al. A single mutated BRCA1 allele leads to impaired fidelity of double strand break end-joining. Oncogene 2002 Feb 21;21(9):1401-10.
(303)Mak TW, Hakem A, McPherson JP, Shehabeldin A, Zablocki E, Migon E, et al. Brcal required for T cell lineage development but not TCR loci rearrangement. Nat Immunol 2000 Jul;1(1):77-82.
(304)Merel P, Prieur A, Pfeiffer P, Delattre O. Absence of major defects in non-homologous DNA end joining in human breast cancer cell lines. Oncogene 2002 Aug 15;21(36):5654-9.
(305)Coupier I, Baldeyron C, Rousseau A, Mosseri V, Pages-Berhouet S, Caux-Moncoutier V, et al. Fidelity of DNA double-strand break repair in heterozygous cell lines harbouring BRCA1 missense mutations. Oncogene 2004 Jan 29;23(4):914-9.
(306)Snouwaert JN, Gowen LC, Latour AM, Mohn AR, Xiao A, DiBiase L, et al. BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a brca1 transgene. Oncogene 1999 Dec 20;18(55):7900-7.
(307)Bau DT, Mau YC, Shen CY. The role of BRCA1 in non-homologous end-joining. Cancer Lett 2005 Sep 16.
(308)Zhuang J, Zhang J, Willers H, Wang H, Chung JH, van G, et al. Checkpoint kinase 2-mediated phosphorylation of BRCA1 regulates the fidelity of nonhomologous end-joining. Cancer Res 2006 Feb 1;66(3):1401-8.
(309)Ferreira MG, Cooper JP. Two modes of DNA double-strand break repair are reciprocally regulated through the fission yeast cell cycle. Genes Dev 2004 Sep 15;18(18):2249-54.
(310)Hinz JM, Yamada NA, Salazar EP, Tebbs RS, Thompson LH. Influence of double-strand-break repair pathways on radiosensitivity throughout the cell cycle in CHO cells. DNA Repair (Amst) 2005 Jul 12;4(7):782-92.
(311)Lau A, Kanaar R, Jackson SP, O'Connor MJ. Suppression of retroviral infection by the RAD52 DNA repair protein. EMBO J 2004 Aug 18;23(16):3421-9.
(312)Allen C, Kurimasa A, Brenneman MA, Chen DJ, Nickoloff JA. DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination. Proc Natl Acad Sci U S A 2002 Mar 19;99(6):3758-63.
(313)Allen C, Halbrook J, Nickoloff JA. Interactive competition between homologous recombination and non-homologous end joining. Mol Cancer Res 2003 Oct;1(12):913-20.
(314)Van DE, Stasiak AZ, Stasiak A, West SC. Binding of double-strand breaks in DNA by human Rad52 protein. Nature 1999 Apr 22;398(6729):728-31.
(315)Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 2005 Mar 31;434(7033):605-11.
(316)Mills KD, Ferguson DO, Essers J, Eckersdorff M, Kanaar R, Alt FW. Rad54 and DNA Ligase IV cooperate to maintain mammalian chromatid stability. Genes Dev 2004 Jun 1;18(11):1283-92.
(317)Clatworthy AE, Valencia-Burton MA, Haber JE, Oettinger MA. The MRE11-RAD50-XRS2 complex, in addition to other non-homologous end-joining factors, is required for V(D)J joining in yeast. J Biol Chem 2005 May 27;280(21):20247-52.
(318)Shevelev IV, Hubscher U. The 3' 5' exonucleases. Nat Rev Mol Cell Biol 2002 May;3(5):364-76.
(319)Polanowska J, Martin JS, Garcia-Muse T, Petalcorin MI, Boulton SJ. A conserved pathway to activate BRCA1-dependent ubiquitylation at DNA damage sites. EMBO J 2006 May 17;25(10):2178-88.
(320)Daley JM, Wilson TE. Rejoining of DNA double-strand breaks as a function of overhang length. Mol Cell Biol 2005 Feb;25(3):896-906.
(321)Budman J, Chu G. Processing of DNA for nonhomologous end-joining by cell-free extract. EMBO J 2005 Feb 23;24(4):849-60.
(322)Blier PR, Griffith AJ, Craft J, Hardin JA. Binding of Ku protein to DNA. Measurement of affinity for ends and demonstration of binding to nicks. J Biol Chem 1993 Apr 5;268(10):7594-601.
(323)Lee JH, Ghirlando R, Bhaskara V, Hoffmeyer MR, Gu J, Paull TT. Regulation of Mre11/Rad50 by Nbs1: effects on nucleotide-dependent DNA binding and association with ataxia-telangiectasia-like disorder mutant complexes. J Biol Chem 2003 Nov 14;278(46):45171-81.
(324)Goedecke W, Eijpe M, Offenberg HH, van AM, Heyting C. Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet 1999 Oct;23(2):194-8.
(325)Kim SS, Cao L, Li C, Xu X, Huber LJ, Chodosh LA, et al. Uterus hyperplasia and increased carcinogen-induced tumorigenesis in mice carrying a targeted mutation of the Chk2 phosphorylation site in Brca1. Mol Cell Biol 2004 Nov;24(21):9498-507.
(326)Li J, Stern DF. Regulation of CHK2 by DNA-dependent protein kinase. J Biol Chem 2005 Mar 25;280(12):12041-50.
(327)Li J, Stern DF. DNA damage regulates Chk2 association with chromatin. J Biol Chem 2005 Nov 11;280(45):37948-56.
(328)Boulton SJ, Jackson SP. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J 1996 Sep 16;15(18):5093-103.
(329)Wang H, Perrault AR, Takeda Y, Qin W, Wang H, Iliakis G. Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res 2003 Sep 15;31(18):5377-88.
(330)Brodsky MH, Weinert BT, Tsang G, Rong YS, McGinnis NM, Golic KG, et al. Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 2004 Feb;24(3):1219-31.
(331)Brown KD, Lataxes TA, Shangary S, Mannino JL, Giardina JF, Chen J, et al. Ionizing radiation exposure results in up-regulation of Ku70 via a p53/ataxia-telangiectasia-mutated protein-dependent mechanism. J Biol Chem 2000 Mar 3;275(9):6651-6.
(332)Muller-Tidow C, Ji P, Diederichs S, Potratz J, Baumer N, Kohler G, et al. The cyclin A1-CDK2 complex regulates DNA double-strand break repair. Mol Cell Biol 2004 Oct;24(20):8917-28.
(333)Durocher D, Henckel J, Fersht AR, Jackson SP. The FHA domain is a modular phosphopeptide recognition motif. Mol Cell 1999 Sep;4(3):387-94.
(334)Ahn JY, Li X, Davis HL, Canman CE. Phosphorylation of threonine 68 promotes oligomerization and autophosphorylation of the Chk2 protein kinase via the forkhead-associated domain. J Biol Chem 2002 May 31;277(22):19389-95.
(335)Lee CH, Chung JH. The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation. J Biol Chem 2001 Aug 10;276(32):30537-41.
(336)Lemaire M, Prime J, Ducommun B, Bugler B. Evolutionary conservation of a novel splice variant of the Cds1/CHK2 checkpoint kinase restricted to its regulatory domain. Cell Cycle 2004 Oct;3(10):1267-70.
(337)Li J, Williams BL, Haire LF, Goldberg M, Wilker E, Durocher D, et al. Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Mol Cell 2002 May;9(5):1045-54.
(338)Xu B, Kim ST, Lim DS, Kastan MB. Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 2002 Feb;22(4):1049-59.
(339)Dai Y, Kysela B, Hanakahi LA, Manolis K, Riballo E, Stumm M, et al. Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci U S A 2003 Mar 4;100(5):2462-7.
(340)Hirao A, Cheung A, Duncan G, Girard PM, Elia AJ, Wakeham A, et al. Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol Cell Biol 2002 Sep;22(18):6521-32.
(341)Akyuz N, Boehden GS, Susse S, Rimek A, Preuss U, Scheidtmann KH, et al. DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol 2002 Sep;22(17):6306-17.
(342)hm-Daphi J, Hubbe P, Horvath F, El-Awady RA, Bouffard KE, Powell SN, et al. Nonhomologous end-joining of site-specific but not of radiation-induced DNA double-strand breaks is reduced in the presence of wild-type p53. Oncogene 2005 Mar 3;24(10):1663-72.
(343)Boulton SJ, Jackson SP. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res 1996 Dec 1;24(23):4639-48.
(344)Liang F, Jasin M. Ku80-deficient cells exhibit excess degradation of extrachromosomal DNA. J Biol Chem 1996 Jun 14;271(24):14405-11.
(345)Feldmann E, Schmiemann V, Goedecke W, Reichenberger S, Pfeiffer P. DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res 2000 Jul 1;28(13):2585-96.
(346)Liang L, Deng L, Chen Y, Li GC, Shao C, Tischfield JA. Modulation of DNA end joining by nuclear proteins. J Biol Chem 2005 Sep 9;280(36):31442-9.
(347)Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci U S A 2002 Jun 11;99(12):8173-8.
(348)Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, et al. Genomic instability in mice lacking histone H2AX. Science 2002 May 3;296(5569):922-7.
(349)Weinstock DM, Jasin M. Alternative pathways for the repair of RAG-induced DNA breaks. Mol Cell Biol 2006 Jan;26(1):131-9.
(350)Rebuzzini P, Khoriauli L, Azzalin CM, Magnani E, Mondello C, Giulotto E. New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. DNA Repair (Amst) 2005 May 2;4(5):546-55.
(351)Rodrigue A, Lafrance M, Gauthier MC, McDonald D, Hendzel M, West SC, et al. Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO J 2006 Jan 11;25(1):222-31.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
1. Expression and Localization of Alcohol and Aldehyde Dehydrogenase Families in Human Oral and Upper Aerodigestive Tract: A Study of Alcohol Metabolome
2. The effect of postnatal depression on mother-infant interaction and infant growth and development
3. Study on Triggered and Automatic Rhythms of Ventricular Myocytes Obtained from Xin Deficient Mouse Hearts
4. To study the role of matriptase and HAI-1 in gastric cancer
5. Identify the determinant of the acidic pk in pH-rate profile of pigeon liver malic enzyme by different metal ions
6. An internal EELD domain facilitates mitochondrial targeting of Mcl-1 via a Tom70-dependent pathway
7. To See the commmunicaiton and dialogue between eastern and western culture from the viewpoint of “Contemplation” —Saint John of the Cross v.s. Chung Tze
8. Investigation of the effects on cellular phenotypes and activation of relative tumor suppressor genes by areca nut extract in human oral keratinocytes.
9. The Role of Oxidative Stress in Amphetamine- and Dopamine-induced Toxic Effects in the Rat Striatum
10. Immunoregulation and Protective Efficiency Against Infectious bronchitis virus of Oral Administration Human Recombinant Interferon-α in Chicken
11. Study on the Fire Resistant and Characterization of Novolac Cured Epoxy Nanocomposites with Different Types of LDH Modified by Organo-Carbon Nanocapsules (O-CNCs)
12. Study of the influence of the terminal groups of cycloalkyl and phenyl ring on the liquid crystal phase behavior
13. The Endogenous Immune Response Modulates the Course of IgA-Immune Complex Mediated Nephropathy
14. Effect Of Hyperoxia On Ventilation–Perfusion Mismatch In Pulmonary Gas Embolism
15. The effect of hyperbaric oxygen therapy to tummor cell in vivo
 
system icon system icon