跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉偉賢
研究生(外文):Liu, Wei-Hsien
論文名稱:人類醇脫氫酶族之研究:阿斯匹靈、水楊酸和乙醇交互作用的動力學機制及量化模擬
論文名稱(外文):Human Alcohol Dehydrogenase Family:Kinetic Mechanism and Quantitative Simulation of Aspirin/SalicylateEthanol Interactions
指導教授:尹士俊
指導教授(外文):Yin, S.-J.
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:77
中文關鍵詞:阿斯匹靈水楊酸醇脫氫酶生體可用性
外文關鍵詞:aspirinsalicylateADHbioavailibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:658
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
醇脫氫酶(alcohol dehydrogenase; ADH)是人體代謝乙醇主要的酶系統。阿斯匹靈(aspirin)為非處方藥,廣泛使用在鎮痛解熱及治療急性風濕和心血管疾病的預防。阿斯匹靈在進人體後會被血中酯解酶(esterase)分解成水楊酸(salicylic acid),若飲酒前後服用阿斯匹靈時,阿斯匹靈及水楊酸是否會抑制人類 ADH 族代謝酒精之活性,進而影響酒精在體內的生體可用性(bioavailability),過去未有報告。本研究應用人類重組 ADH 族同功酶探討(1)人類 ADH 族的阿斯匹靈及水楊酸和乙醇交互作用之酶動力學機制及常數,(2)依動力學機制及常數,推導人類 ADH 族阿斯匹靈及水楊酸和乙醇交互作用之數值型酶動力學方程式,(3)依人類 ADH 族各數值型酶動力學方程式,量化模擬分析細胞內不同濃度之阿斯匹靈及水楊酸對不同濃度乙醇代謝之影響。
實驗結果顯示,阿斯匹靈及水楊酸對第一類 ADH1A、第二類 ADH2 及第四類 ADH4 乙醇氧化和乙醛還原反應之動力學抑制機制共有四型:第一型為抑制劑(I)競爭輔酶(E)及酶-輔酶(NAD+ 和 NADH)二元複合物基質結合位(E*A及E*Q),阿斯匹靈及水楊酸對 ADH2 屬此機制。第二型為I競爭E及E*A,水楊酸對 ADH4 屬此機制。第三型為I競爭EA及E*A,阿斯匹靈對 ADH1A 屬此機制。第四型為I競爭E、EA及E*A,阿斯匹靈對 ADH4 及水楊酸對 ADH1A 屬此機制。阿斯匹靈對 ADH2 的E、E*A及E*Q之解離常數Kd值分別為33.5、5.53及83.3 mM;水楊酸對 ADH2 的E、E*A及E*Q之Kd值分別為3.44、0.118及3.41 mM;水楊酸對第四類 ADH4 的E及E*A之Kd值為8.91及9.37 mM。
應用抑制動力學機制推導之恆態速率方程式量化模擬分析細胞中 ADH 的活性,顯示在服用一般劑量阿斯匹靈的條件下,阿斯匹靈抑制肝臟中主要代謝酒精的 ADH2 活性不明顯(抑制率小於7%)。阿斯匹靈之水解產物水楊酸在一般血中可達到的濃度下雖抑制胃細胞中 ADH4 代謝酒精的活性不及7%,但抑制 ADH2 代謝酒精的活性則可達70%,因此可能可以改變血中酒精濃度,增加酒精在人體內之生體可用性,影響酒精之肝傷害和酒後駕車的安全。
Alcohol dehydrogenase (ADH) family is the principal enzyme system responsible for ethanol metabolism in human. Aspirin is a widely used analgesic and antipyretic drug and also for treatment of acute arthritis and prevention of cardiovascular diseases. Aspirin can be rapidly hydrolyzed to yield salicylate by blood esterases. The purpose of this thesis is to (1) explore interactions of aspirin and salicylate and ethanol with ADH family, (2) elucidate kinetic mechanism of the interactions and derive the mechanism-based complete kinetic equations, (3) quantitatively simulate the drug-alcohol interactions with ADH family members in the hepatocytes and gastric mucosal cells.
Kinetic results indicate that 4 types of dead-end inhibition mechanisms can be deduced from the inhibition patterns of substrate ethanol or acetaldehyde and of coenzyme NAD+ and NADH by aspirin and salicylate with human class I ADH1A, class II ADH2 and class IV ADH4 as follows. (a) Inhibition of ADH2 by aspirin or salicylate belongs to type 1 mechanism—inhibitor binds to both the sites of coenzyme (NAD+ and NADH) and substrate (ethanol and acetaldehyde). (b) Inhibition of ADH4 by salicylate belongs to type 2 mechanism—inhibitor binds to the coenzyme and the substrate ethanol sites. (c) Inhibition of ADH1A by aspirin belongs to type 3 mechanism—inhibitor binds to the substrate ethanol site in the presence of isomerization of the binary complexes EA and E*A. (d) Inhibition of ADH4 by aspirin and ADH1A by salicylate belongs to type 3 mechanism—inhibitor binds to the coenzyme site and the substrate ethanol site in the presence of isomerization of the binary complexes EA and E*A. With respect to class II ADH2, dissociation constants (Kd) of aspirin with E, E*A or E*Q were determined to be 33.5, 5.53, and 83.3 mM, respectively; Kd of salicylate with E, E*A or E*Q, 3.44, 0.118, and 3.41 mM, respectively. For class IV ADH4, Kd of salicylate with E or E*A were determined to be 8.91 and 9.37, respectively.
Simulation studies of inhibition of in vivo ethanol metabolism by aspirin and salicylate using the derived kinetic mechanism-based complete steady-state kinetic equations indicate that aspirin appears to be to ineffective to inhibit the liver ADH2 activity (less than 7%) whereas the metabolite salicylate can significantly inhibit the liver ADH2 activity (up to 70%) under pharmacologically relevant concentrations, and that both aspirin and salicylate appear to be ineffective to inhibit the gastric ADH4 activity (less than 7%). Thus, taking aspirin may elevate bioavailability of ethanol and potentially may increase ethanol-induced liver damage as well as influence performance and safety of vehicle driving.
目錄 •••••••••••••••••••••••••••••••I
表目錄 ••••••••••••••••••••••••••••••III
圖目錄 ••••••••••••••••••••••••••••••IV
縮寫表 ••••••••••••••••••••••••••••••V
中文摘要 •••••••••••••••••••••••••••••VI
英文摘要 •••••••••••••••••••••••••••••VII
緒言 •••••••••••••••••••••••••••••••1
材料與方法 ••••••••••••••••••••••••••••7
壹、 實驗材料 ••••••••••••••••••••••••••7
一、 化學藥品 ••••••••••••••••••••••7
二、 試劑配方 ••••••••••••••••••••••8
三、 主要儀器 ••••••••••••••••••••••8
四、 載體與大腸桿菌宿主品系 •••••••••••••••9
五、 其他用品 ••••••••••••••••••••••9
貳、 實驗方法 •••••••••••••••••••••••••9
一、 人類重組ADH族之誘導表現及純化 ••••••••••9
二、 電泳 ••••••••••••••••••••••••11
三、 ADH pI 之測定 •••••••••••••••••••12
四、 蛋白質濃度之測定 •••••••••••••••••••12
五、 ADH 活性之測定 •••••••••••••••••••12
六、 比活性之計算 •••••••••••••••••••••13
七、 動力學測定及常數分析 •••••••••••••••••13
實驗結果 •••••••••••••••••••••••••••••15
壹、 人類重組 ADH 族之動力學特性 •••••••••••••••15
一、 人類重組第一類 ADH1A 之動力學常數 ••••••••••15
二、 人類重組第二類 ADH2 之動力學常數 ••••••••••15
三、 人類重組第四類 ADH4 之動力學常數 ••••••••••16
貳、 阿斯匹靈及水楊酸對人類重組 ADH 族之抑制實驗 •••••••17
一、 阿斯匹靈對人類重組第一類 ADH1A 之抑制實驗 ••••••17
二、 阿斯匹靈對人類重組第二類 ADH2 之抑制實驗 ••••••17
三、 阿斯匹靈對人類重組第四類 ADH4 之抑制實驗 ••••••18
四、 水楊酸對人類重組第一類 ADH1A 之抑制實驗 •••••••19
五、 水楊酸對人類重組第二類 ADH2 之抑制實驗 ••••••20
六、 水楊酸對人類重組第四類 ADH4 之抑制實驗 ••••••21
參、 阿斯匹靈及水楊酸對人類重組 ADH 族催化乙醇氧化和乙醛還原之死巷抑制機制 •••••••••••••••••••••••••21
一、 阿斯匹靈及水楊酸對 ADH2 之抑制機制 •••••••••22
二、 水楊酸對 ADH4 之抑制機制 ••••••••••••••22
三、 水楊酸對 ADH1A 及阿斯匹靈對 ADH4 之抑制機制 ••••22
四、 阿斯匹靈對 ADH1A 之抑制機制 •••••••••••••23
五、 第一型抑制機制校正公式之推導 •••••••••••••• 23
六、 第二型動力學方程式及其校正公式之推導 •••••••••• 23
肆、 量化模擬細胞中阿斯匹靈及水楊酸對 ADH 族乙醇代謝之影響•••••••••••••••••••••••••••••• 24
一、 阿斯匹靈對 ADH2 乙醇代謝之影響 •••••••••••24
二、 水楊酸對 ADH2 與 ADH4 乙醇代謝之影響 ••••••••24
伍、 巨分子配體停泊模擬實驗 ••••••••••••••••••• 24
討論 •••••••••••••••••••••••••••••••25
壹、 阿斯匹靈穩定度的探討 ••••••••••••••••••••25
貳、 人類重組 ADH 族之動力學特性 •••••••••••••••25
參、 阿斯匹靈和水楊酸對人類重組 ADH 族乙醇氧化之抑制及其動力學機制••••••••••••••••••••••••••••26
一、 人類重組 ADH 族阿斯匹靈及水楊酸抑制常數比較•••••26
二、 人類重組 ADH 族催化乙醇氧化及乙醛還原反應之機制•26
三、 阿斯匹靈與水楊酸對人類重組 ADH 族的乙醇氧化和乙醛還原反應之抑制及其動力學機制 ••••••••••••••••27
肆、 阿斯匹靈及水楊酸對人類重組 ADH 族乙醇氧化及乙醛還原反應之動力學常數校正 ••••••••••••••••••••••••27
一、 第三及第四型動力學方程式之推導 ••••••••••••28
二、 阿斯匹靈及水楊酸對人類重組 ADH 族之抑制常數校正前後比較 ••••••••••••••••••••••••••28
伍、 阿斯匹靈及水楊酸對人類重組 ADH 族解離常數之化學意義探討 •••••••••••••••••••••••••••••30
陸、 阿斯匹靈及水楊酸對人類重組第二類 ADH2 及第四類 ADH4乙醇氧化的抑制作用及其藥理意義探討 •••••••••••••••31
結論 •••••••••••••••••••••••••••••••32
參考文獻 •••••••••••••••••••••••••••••33
Ammon, E., Schafer, C., Hofmann, U. and Klotz, U.: Disposition and first-pass metabolism of ethanol in humans: is it gastric or hepatic and does it depend on gender? Clin Pharmacol Ther. 59(5):503-513, 1996.
Bosron, W. F., Ehrig, T. and Li, T. K.: Genetic factors in alcohol metabolism and alcoholism. Semin Liver Dis. 13(2):126-135, 1993.
Bosron, W. F., Magnes, L. J. and Li, T. K.: Kinetic and electrophoretic properties of native and recombined isoenzymes of human liver alcohol dehydrogenase. Biochemistry. 22(8):1852-1857, 1983.
Burnell, J. C., Carr, L. G., Dwulet, F. E., Edenberg, H. J., Li, T. K. and Bosron, W. F.: The human beta 3 alcohol dehydrogenase subunit differs from beta 1 by a Cys for Arg-369 substitution which decreases NAD(H) binding. Biochem Biophys Res Commun. 146(3):1127-1133, 1987.
Burnell, J. C. and Bosron, W. F.: Genetic polymorphism of human liver alcohol dehydrogenase and kinetic properties of the isoenzymes. in: Human metabolism of alcohol, Vol. 2, Crow, K. E., Batt, R. D. and Boca Raton, F. L., eds., CRC, 1989, pp. 65-75.
Dafeldecker, W. P. and Vallee, B. L.: Organ-specific human alcohol dehydrogenase: isolation and characterization of isozymes from testis. Biochem Biophys Res Commun. 134(3):1056-1063, 1986.
Dong, Y.-J., Peng, T.-K. and Yin, S.-J.: Expression and activities of class IV alcohol dehydrogenase and class III aldehyde dehydrogenase in human mouth. Alcohol. 13(3):257-262, 1996.
Duester, G., Farres, J., Felder, M. R., Holmes, R. S., Höög, J. O., Pares, X., Plapp, B. V., Yin, S. J. and Jörnvall, H.: Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem Pharmacol. 58(3):389-395, 1999.
Einarsson, R., Eklund, H., Zeppezauer, E., Boiwe, T. and Branden, C. I.: Binding of salicylate in the adenosine-binding pocket of dehydrogenases. Eur J Biochem. 49(1):41-47, 1974.
Eklund, H., Muller-Wille, P., Horjales, E., Futer, O., Holmquist, B., Vallee, B. L., Höög, J. O., Kaiser, R. and Jörnvall, H.: Comparison of three classes of human liver alcohol dehydrogenase. Emphasis on different substrate binding pockets. Eur J Biochem. 193(2):303-310, 1990.
Eklund, H. and Branden, C. I.: Alcohol dehydrogenase. In: Biological Macromolecules and Assemblies, Vol. 3, F. A. Jumak and A. McPherson, eds., Wiley, New York, pp.73-142, 1987.
Eklund, H., Nordstrom, B., Zeppezauer, E., Soderlund, G., Ohlsson, I., Boiwe, T., Soderberg, B. O., Tapia, O., Branden, C. I. and Akeson, A.: Three-dimensional structure of horse liver alcohol dehydrogenase at 2-4 A resolution. J Mol Biol. 102(1):27-59, 1976.
Engeland, K. and Maret, W.: Extrahepatic, differential expression of four classes of human alcohol dehydrogenase. Biochem Biophys Res Commun. 193(1):47-53, 1993.
Estonius, M., Höög, J. O., Danielsson, O. and Jörnvall, H.: Residues specific for class III alcohol dehydrogenase. Site-directed mutagenesis of the human enzyme. Biochemistry. 33(50):15080-15085, 1994.
Estonius, M., Svensson, S. and Höög, J. O.: Alcohol dehydrogenase in human tissues: localisation of transcripts coding for five classes of the enzyme. FEBS Lett. 397(2-3):338-342, 1996.
Frezza, M., di Padova, C., Pozzato, G., Terpin, M., Baraona, E. and Lieber, C. S.: High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med. 322(2):95-99, 1990.
Gentry, R. T., Baraona, E., Amir, I., Roine, R., Chayes, Z. W., Sharma, R. and Lieber, C. S.: Mechanism of the aspirin-induced rise in blood alcohol levels. Life Sci. 65(23):2505-2512, 1999.
Giri, P. R., Krug, J. F., Kozak, C., Moretti, T., O'Brien, S. J., Seuanez, H. N. and Goldman, D.: Cloning and comparative mapping of a human class III (chi) alcohol dehydrogenase cDNA. Biochem Biophys Res Commun. 164(1):453-460, 1989.
Goedde, H. W., Agarwal, D. P., Fritze, G., Meier-Tackmann, D., Singh, S., Beckmann, G., Bhatia, K., Chen, L. Z., Fang, B. and Lisker, R.: Distribution of ADH2 and ALDH2 genotypes in different populations. Hum Genet. 88(3):344-346, 1992.
Han, C.-L., Liao, C.-S., Wu, C.-W., Hwong, C.-L., Lee, A.-R. and Yin, S.-J.: Contribution to first-pass metabolism of ethanol and inhibition by ethanol for retinol oxidation in human alcohol dehydrogenase family-implications for etiology of fetal alcohol syndrome and alcohol-related diseases. Eur J Biochem. 254(1):25-31, 1998.
Han, C.-L.: Kinetic mechanism of human alcohol dehydrogenase family. Implications for functional classification and ethanol/retinol metabolism. Ph.D. dissertation, National Defense Medical Center, Taipei, 1998.
Hernández-Munõz, R., Caballeria, J., Baraona, E., Uppal, R., Greenstein, R. and Lieber, C. S.: Human gastric alcohol dehydrogenase: its inhibition by H2-receptor antagonists, and its effect on the bioavailability of ethanol. Alcohol Clin Exp Res. 14(6):946-950, 1990.
Höög, J. O., von Bahr-Lindstrom, H., Heden, L. O., Holmquist, B., Larsson, K., Hempel, J., Vallee, B. L. and Jörnvall, H.: Structure of the class II enzyme of human liver alcohol dehydrogenase: combined cDNA and protein sequence determination of the pi subunit. Biochemistry. 26(7):1926-1932, 1987.
Hurley, T. D., Bosron, W. F., Hamilton, J. A. and Amzel, L. M.: Structure of human beta 1 beta 1 alcohol dehydrogenase: catalytic effects of non-active-site substitutions. Proc Natl Acad Sci U S A. 88(18):8149-8153, 1991.
Hurley, T. D., Bosron, W. F., Stone, C. L. and Amzel, L. M.: Structures of three human beta alcohol dehydrogenase variants. Correlations with their functional differences. J Mol Biol. 239(3):415-429, 1994.
Hurley, T. D., Edenberg, H. J. and Bosron, W. F.: Expression and kinetic characterization of variants of human beta 1 beta 1 alcohol dehydrogenase containing substitutions at amino acid 47. J Biol Chem. 265(27):16366-16372, 1990.
Jörnvall, H., Hempel, J., Vallee, B. L., Bosron, W. F. and Li, T. K.: Human liver alcohol dehydrogenase: amino acid substitution in the beta 2 beta 2 Oriental isozyme explains functional properties, establishes an active site structure, and parallels mutational exchanges in the yeast enzyme. Proc Natl Acad Sci U S A. 81(10):3024-3028, 1984.
Jörnvall, H. and Höög, J. O.: Nomenclature of alcohol dehydrogenases. Alcohol Alcohol. 30(2):153-161, 1995.
Jörnvall, H., Shafqat, J., el-Ahmad, M., Hjelmqvist, L., Persson, B. and Danielsson, O.: Alcohol dehydrogenase variability. Evolutionary and functional conclusions from characterization of further variants. Adv Exp Med Biol. 414:281-289, 1997.
Kaiser, R., Holmquist, B., Hempel, J., Vallee, B. L. and Jörnvall, H.: Class III human liver alcohol dehydrogenase: a novel structural type equidistantly related to the class I and class II enzymes. Biochemistry. 27(4):1132-1140, 1988.
Kaiser, R., Holmquist, B., Vallee, B. L. and Jörnvall, H.: Human class III alcohol dehydrogenase/glutathione-dependent formaldehyde dehydrogenase. J Protein Chem. 10(1):69-73, 1991.
Kechagias, S., Jonsson, K. A., Norlander, B., Carlsson, B. and Jones, A. W.: Low-dose aspirin decreases blood alcohol concentrations by delaying gastric emptying. Eur J Clin Pharmacol. 53(3-4):241-246, 1997.
Kedishvili, N. Y., Bosron, W. F., Stone, C. L., Hurley, T. D., Peggs, C. F., Thomasson, H. R., Popov, K. M., Carr, L. G., Edenberg, H. J. and Li, T. K.: Expression and kinetic characterization of recombinant human stomach alcohol dehydrogenase. Active-site amino acid sequence explains substrate specificity compared with liver isozymes. J Biol Chem. 270(8):3625-3630, 1995.
Kees, F., Jehnich, D. and Grobecker, H.: Simultaneous determination of acetylsalicylic acid and salicylic acid in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Appl. 677(1):172-177, 1996.
Koivusalo, M., Baumann, M. and Uotila, L.: Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase. FEBS Lett. 257(1):105-109, 1989.
Lee, S.-L., Höög, J. O. and Yin, S.-J.: Functionality of allelic variations in human alcohol dehydrogenase gene family: assessment of a functional window for protection against alcoholism. Pharmacogenetics. 14(11):725-732, 2004.
Lee, S.-L., Wang, M.-F., Lee, A.-I. and Yin, S.-J.: The metabolic role of human ADH3 functioning as ethanol dehydrogenase. FEBS Lett. 544(1-3):143-147, 2003.
Levitt, M. D.: Antagonist: the case against first-pass metabolism of ethanol in the stomach. J Lab Clin Med. 123(1):28-31; discussion 32-23, 1994.
Levitt, M. D. and Levitt, D. G.: Use of a two-compartment model to assess the pharmacokinetics of human ethanol metabolism. Alcohol Clin Exp Res. 22(8):1680-1688, 1998.
Levitt, M. D., Li, R., DeMaster, E. G., Elson, M., Furne, J. and Levitt, D. G.: Use of measurements of ethanol absorption from stomach and intestine to assess human ethanol metabolism. Am J Physiol. 273(4 Pt 1):G951-957, 1997.
Li, T.-K.: Enzymology of human alcohol metabolism. Adv. Enzymol. 45:427-483, 1977.
Lieber, C. S. and DeCarli, L. M.: Hepatic microsomal ethanol-oxidizing system. In vitro characteristics and adaptive properties in vivo. J Biol Chem. 245(10):2505-2512, 1970.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J.: Protein measurement with the Folin phenol reagent. J Biol Chem. 193(1):265-275, 1951.
Mallat, A., Roudot-Thoraval, F., Bergmann, J. F., Trout, H., Simonneau, G., Dutreuil, C., Blanc, L. E., Dhumeaux, D. and Delchier, J. C.: Inhibition of gastric alcohol dehydrogenase activity by histamine H2-receptor antagonists has no influence on the pharmacokinetics of ethanol after a moderate dose. Br J Clin Pharmacol. 37(2):208-211, 1994.
Moreno, A., Parés, A., Ortiz, J., Enríquez J. and Parés, X.: Alcohol dehydrogenase from human stomach: variability in normal mucosa and effect of age, gender, ADH3 phenotype and gastric region. Alcohol Alcohol. 29(6):663-671, 1994.
Moreno, A. and Parés, X.: Purification and characterization of a new alcohol dehydrogenase from human stomach. J Biol Chem. 266(2):1128-1133, 1991.
Moulis, J.-M., Holmquist, B. and Vallee, B. L.: Hydrophobic anion activation of human liver alcohol dehydrogenase. Biochemistry 30:5743-5749, 1991.
Pirola, R., Bareggi, S. R. and De Benedittis, G.: Determination of acetylsalicylic acid and salicylic acid in skin and plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 705(2):309-315, 1998.
Rance, M. J., Jordan, B. J. and Nichols, J. D.: A simultaneous determination of acetylsalicylic acid, salicylic acid and salicylamide in plasma by gas liquid chromatography. J Pharm Pharmacol. 27(6):425-429, 1975.
Roine, R., Gentry, R. T., Hernández-Munõz, R., Baraona, E. and Lieber, C. S.: Aspirin increases blood alcohol concentrations in humans after ingestion of ethanol. Jama. 264(18):2406-2408, 1990.
Rowland, M. and Riegelman, S.: Determination of acetylsalicylic acid and salicylic acid in plasma. J Pharm Sci. 56(6):717-720, 1967.
Rowland, M., Riegelman, S., Harris, P. A. and Sholkoff, S. D.: Absorption kinetics of aspirin in man following oral administration of an aqueous solution. J Pharm Sci. 61(3):379-385, 1972.
Sanghani, P. C., Stone, C. L., Ray, B. D., Pindel, E. V., Hurley, T. D. and Bosron, W. F.: Kinetic mechanism of human glutathione-dependent formaldehyde dehydrogenase. Biochemistry. 39(35):10720-10729, 2000.
Seitz, H. K., Simanowski, U. A., Egerer, G., Waldherr, R. and Oertl, U.: Human gastric alcohol dehydrogenase: in vitro characteristics and effect of cimetidine. Digestion. 51(2):80-85, 1992.
Smith, M., Hopkinson, D. A. and Harris, H.: Developmental changes and polymorphism in human alcohol dehydrogenase. Ann Hum Genet. 34(3):251-271, 1971.
Stone, C. L., Thomasson, H. R., Bosron, W. F. and Li, T. K.: Purification and partial amino acid sequence of a high-activity human stomach alcohol dehydrogenase. Alcohol Clin Exp Res. 17(4):911-918, 1993.
Svensson, S., Lundsjo, A., Cronholm, T. and Höög, J. O.: Aldehyde dismutase activity of human liver alcohol dehydrogenase. FEBS Lett. 394(2):217-220, 1996.
Thomasson, H. R., Edenberg, H. J., Crabb, D. W., Mai, X. L., Jerome, R. E., Li, T. K., Wang, S. P., Lin, Y. T., Lu, R. B. and Yin, S. J.: Alcohol and aldehyde dehydrogenase genotypes and alcoholism in Chinese men. Am J Hum Genet. 48(4):677-681, 1991.
Tipton, K. F., Henehan, G. T. and Harrington, M. C.: Cellular and intracellular distribution of aldehyde dehydrogenase. In: Human Metabolism of Alcohol, K. E. Crow, and R. D. Batt, eds., Vol. 2, CRC Press, Boca Raton, 1989, pp. 105-116.
Vallee, B. L. and Bazzone, T. J.: Isozymes of human liver alcohol dehydrogenase. Isozymes Curr Top Biol Med Res. 8:219-244, 1983.
Xie, P., Parsons, S. H., Speckhard, D. C., Bosron, W. F., and Hurley, T. D.: X-ray structure of human class IValcohol dehydrogenase. Structural basis for substrate specificity. J Biol Chem. 272(30):18558-18563, 1997.
Wu, M.-L.: Human alcohol dehydrogenase family: kinetic characterization and quantitative simulation of aspirin/salicylate–Ethanol interactions. M.S. thesis, National Defense Medical Center, Taipei, 2005.
Yang, Z. N., Bosron, W. F. and Hurley, T. D.: Structure of human chi chi alcohol dehydrogenase: a glutathione-dependent formaldehyde dehydrogenase. J Mol Biol. 265(3):330-343, 1997.
Yasunami, M., Chen, C.-S. and Yoshida, A.: A human alcohol dehydrogenase gene (ADH6) encoding an additional class of isozyme. Proc Natl Acad Sci U S A. 88(17):7610-7614, 1991.
Yin, S.-J., Lee, S.-L., Han, C.-L., Chou, C.-F. and Wang, M.-F.: Pharmacogenetic determinants of alcohol metabolism and alcoholism in human alcohol dehydrogenase family. In: Enzymology and Molecular Biology of Carbonyl Metabolism 12, H. Weiner, R. Lindahl, B. V. Plapp and E. Maser, eds., Purdue University Press, West Lafayette, in press, 2005.
Yin, S.-J. and Peng, G.-S.: Overview of ALDH polymorphism: Relation to cardiovascular effects of alcohol, In: Comprehensive Handbook of Alcohol Related Pathology, V. R. Preedy and R. R. Watson, eds., vol.1, Elsevier Science Inc., London, pp. 411–426, 2005.
Yin, S.-J. and Agarwal, D. P.: Functional polymorphism of alcohol and aldehyde dehydrogenases: Alcohol metabolism, alcoholism, and alcohol-induced organ damage, in “Alcohol in Health and Disease,” D. P. Agarwal and H. K. Seitz, eds., Marcel Dekker, New York, pp. 1–26, 2001.
Yin, S.-J., Han, C.-L., Lee, A.-I. and Wu, C.-W.: Human alcohol dehydrogenase family. Functional classification, ethanol/retinol metabolism, and medical implications. Adv Exp Med Biol. 463:265-274, 1999.
Yin, S.-J., Liao, C.-S., Wu, C.-W., Li, T.-T., Chen, L.-L., Lai, C.-L. and Tsao, T.-Y.: Human stomach alcohol and aldehyde dehydrogenases: comparison of expression pattern and activities in alimentary tract. Gastroenterology. 112(3):766-775, 1997.
Yin, S.-J.: Alcohol dehydrogenase: enzymology and metabolism. in: The Biology of Alcohol Problems. Saunders, J. B. and Whitfield, J. B., eds., Elsevier Science, Oxford, pp. 113-119, 1996.
Yin, S.-J. Wang, S.-L., Liao, C.-S. and Jörnvall, H.: Human high-Km aldehyde dehydrogenase (ALDH3): Molecular kinetic and structural features. In: Enzymology and Molecular Biology of Carbonyl Metabolism 4, H. Weiner, D. W. Crabb and T. G. Flynn, eds., Plenum Press, New York, pp. 87-98, 1993a.
Yin, S.-J., Chou, F.-J., Chao, S.-F., Tsai, S.-F., Liao, C.-S., Wang, S.-L., Wu, C.-W. and Lee, S.-C.: Alcohol and aldehyde dehydrogenases in human esophagus: comparison with the stomach enzyme activities. Alcohol Clin Exp Res. 17(2):376-381, 1993.
Yoshida, A., Hsu, L. C. and Yasunami, M.: Genetics of human alcohol-metabolizing enzymes. Prog Nucleic Acid Res Mol Biol. 40:255-287, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 7.江嘉琪,〈公私法混合契約初探-德國法之觀察〉,《中原財經法學》,第九期,2002年12月。
2. 8.吳信華,〈人民聲請釋憲之「窮盡救濟途徑」與「補充性原則」〉【縮寫:〈人民聲請釋憲之途徑與原則〉】,《月旦法學教室》,第二十二期,2004年8月。
3. 9.吳信華,〈人民聲請釋憲之「聲請權能」〉,《月旦法學教室》,第二十七期,2005年1月。
4. 10.吳信華,〈基本權利的體系思考〉,《月旦法學教室》,第九期,2003年7月。
5. 14.李仁淼,〈司法權的觀念—由日本「客觀訴訟與司法權觀念之論爭,反思我國司法定位問題,〉《全國律師》,2003年3月號。
6. 17.李建良,〈行政法的法源、規範及其位階(上)〉,《月旦法學教室》,第二十四期,2003年10月。
7. 18.李建良,〈行政法的法源、規範及其位階(中)〉,《月旦法學教室》,第二十四期,2003年10月。
8. 19.李建良,〈行政法概念與體系〉,《月旦法學教室》,第十八期,2004年8月。
9. 20.李建良,〈論公益概念具體化在立法及法律適用上之原則〉【縮寫:〈論公益概念具體化之原則〉】,《憲政時代》,76年,十二卷三期。
10. 23.李震山,〈程序基本權〉,《月旦法學教室》,第十九期,2004年5月。
11. 27.林明昕,〈行政契約法上實務問題之回顧-兼論公、私法契約之區別〉,《國立中正大學法學集刊》,民94年3月。
12. 31.張特生,〈法院權限衝突問題的再探討〉,《法令月刊》,第46卷第6期,1995年6月。
13. 32.許士宦,〈新修正民事訴訟法上程序保障之新開展〉,《月旦法學教室》,第六期,2003年4月。
14. 33.許育典,〈基本權的本質〉,《月旦法學教室》,第十四期,2003年12月。
15. 34.許宗力,〈基本權利的第三人效力與國庫效力〉,《月旦法學教室》,第九期,2003年7月。