跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 02:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐宗暐
研究生(外文):Chung-wei Hsu
論文名稱:實驗性腦外傷後給予黃芩素改善神經功能之細胞及分子機制
論文名稱(外文):Cellular & molecular mechanism underlying the improvement of neurological outcome by baicalein administered after experimental brain trauma
指導教授:王家儀王家儀引用關係
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:89
中文關鍵詞:黃芩素
外文關鍵詞:baicalein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
已知黃芩素可降低腦中風引起之發炎反應而產生神經保護作用,但其是否對於腦創傷亦有神經保護作用仍不清楚,因此我們研究給予黃芩素治療對於腦創傷大鼠的藥效,並且評估其可能的作用機制,實驗設計針對大鼠腦創傷之後行為功能的恢復、神經損害、發炎相關的細胞激素/趨化激素之表現和氧化傷害之程度進行評估。將大鼠施以可控制的皮質撞擊(速度4 m/s、深度2 mm)造成大鼠腦傷,並在創傷5分鐘之後注射黃芩素(30 mg/kg, 腹腔注射)或者溶媒;在腦創傷之後的1、4、7、14天使用跑步滾輪測試(運動)和雙側觸覺黏著移除測試(感覺/運動)評估動物神經的損害;在行為評估之後將老鼠犧牲、灌流、取腦組織進行冷凍切片;在第1和14天以甲酚紫染色測量創傷體積;在腦創傷後1天以Fluro-Jade B染色評估神經退化及自由基攻擊蛋白質及脂肪的產物(3-NT, 4-HNE)之免疫組織染色評估腦組織之氧化傷害;在創傷之後3、6小時及1、4天以懸浮式酵素聯結反應測量細胞激素和趨化激素(TNF-a, IL-1β, IL-6 & MIP-2)的蛋白質濃度;並於腦創傷後6小時以即時定量反轉錄聚合酶連鎖反應測定細胞激素和趨化激素mRNAs的表現。所有腦創傷動物皆以黏著移除及跑步滾輪等行為測試評估運動及感覺功能損害,從創傷後1天開始行為功能會隨著時間自我恢復。以跑步滾輪測試及雙側的觸覺黏著測試發現給予黃芩素治療的腦創傷大鼠在創傷之後1、4和7天行為能力相較於給予溶媒組腦創傷大鼠有明顯的改善。給予黃芩素治療也可以降低在腦創傷1天FJB退化性神經數目及在腦創傷14天的創傷體積。於腦創傷後各個時間點,腦脊髓液中前發炎細胞激素濃度皆沒有顯著增加,組織中前發炎細胞激素(TNF-a, IL-1β, IL-6)之濃度在創傷之後1天顯著上升。給予黃芩素明顯降低受傷組織中細胞激素及趨化激素(TNF-a, IL-1β, IL-6 & MIP-2)之濃度。細胞激素及趨化激素(TNF-a, IL-1β, IL-6 & MIP-2) mRNA含量顯著增加顯示有顯著的轉錄活化作用,在腦創傷之後給予黃芩素顯著降低細胞激素及趨化激素(TNF-a, IL-1β, IL-6 & MIP-2) mRNA。氧化傷害指標3-NT及4-HNE於創傷組織中細胞數目增加,給予黃芩素治療組之腦組織中3-NT及4-HNE細胞數目明顯比給予溶媒組少。這些結果表示創傷後給予黃芩素治療可降低神經損傷並且促進行為功能的恢復、降低細胞激素、趨化激素ROS攻擊產物的產量,故推論黃芩素神經保護的機制可能與抗發炎反應和減少創傷後的氧化傷害有關。
Baicalein has been shown to exert an anti-inflammatory effect following stroke insults but the protective effect in traumatic brain injury (TBI) is still unknown. We therefore examined the effect of baicalein treatment on functional recovery, neuronal damage, inflammatory cytokine/chemokine expression and markers of oxidative damage following TBI in rats. Rats with TBI caused by controlled cortical impact (CCI with 4m/s velocity, 2mm deformation) were given with baicalein (30 mg/kg, i.p.) or vehicle 5 minutes after TBI. The animals were evaluated for neurological deficits using rotarod (motor) and bilateral tactile adhesive removal tests (sensory/motor) at 1, 4, 7, 14 days after TBI. Animals were sacrified after functional evaluation by transcardial perfusion and brains were removed and sectioned by a cryostst. Brain contusion volume was measured by cresyl violet staining at 1 and 14 days. Neuronal degeneration was evaluated by Fluro-jade B (FJB) staining and markers for ROS-attacked product (3-NT, 4-HNE) were assessed by immunohistochemical staining, respectively, at 1 day. Protein concentration of cytokines and chemokines (TNF-a , IL-1β, IL-6 & MIP-2) in brain tissue and in cerebrospinal fluid (CSF) was measured by bio-plex suspension ELISA array at 3hr, 6hr, 1 day and 4 days after injury. Expression of cytokines/chemokines mRNAs was also quantitative measured by real-time reverse transcription PCR at 6 hr. All TBI animals displayed functional deficits as examined by adhesive removal and rotarod tests from day 1 after TBI and functional improvement occurred at subsequent time points. TBI rats treated with baicalein performed better on both the rotarod and bilateral tactile adhesive tests as compared with vehicle-treated animals at 1, 4 and 7 days after injury. Baicalein treatment also reduced the number FJB-positive degenerating neurons at1 day and contusion volume at 14 days. While CSF levels of pro-inflammatory cytokines did not significantly increase at each selected time point after TBI, tissue levels of pro-inflammatory cytokines (TNF-, IL-1, IL-6) were markedly elevated at 1 day after TBI. Baicalein treatment significantly reduced cytokines (TNF-, IL-1, IL-6) and chemokines (MIP-2) levels. The pro-inflammatory cytokines (TNF-, IL-1, IL-6) and chemokines (MIP-2) were all highly transcriptionally activated and revealed by the dramatical increase in their mRNA levels after TBI. Baicalein treatment significantly reduced pro-inflammatory cytokines (TNF-, IL-1, IL-6) and chemokines (MIP-2) mRNA levels. Furthermore, increased 3NT and 4-HNE immunoreactivity were detected after CCI. However, the 3-NT and 4-HNE immunoreactivity was less prominent in the baicalein-treated TBI rats than in the vehicle-treated TBI rats. These findings indicate that post-traumatic baicalein treatment reduces neuronal damage and promotes functional recovery from TBI. The reduced production of cytokines/chemokines and ROS-attacked products suggests that the neuroprotective effect of baicalein may be attributed, in part, by its anti-inflammatory and anti-oxidant mechanism(s).
頁次
目錄……………………………………………………………………………...I
中文摘要………………………………………………………………………..II
英文摘要……………………………………………………………………….IV
第一章 緒論…………………………………………………………………….1
第二章 實驗材料與研究方法………………………………………………...16
第三章 實驗結果……………………………………………………………...32
第四章 討論…………………………………………………………………...39
第五章 結論…………………………………………………………………...45
附錄…………………………………………………………………………….46
圖次…………………………………………………………………………….48
參考文獻……………………………………………………………………….80
林口長庚醫院神經內科一科陳德榮編著(2002)。臨床神經學第十四章。合記圖書出版。
衛生署統計室(2003),台灣地區死因結果概論。青年書局出版。
Department of Health and Human Services, Centers for Disease Control and Prevention.
Acarin, L., Gonzalez, B., Castellano, B., 2000. Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci. 12: 3505.
Allan, S. M., 2000. The role of pro- and antiinflammatory cytokines in neurodegeneration. Ann N Y Acad Sci. 917: 84.
Allan, S. M., 2002. Varied actions of proinflammatory cytokines on excitotoxic cell death in the rat central nervous system. J Neurosci Res. Feb 15; 67(4): 428.
Annadora, J., and Bruce-Keller, A. J., 1999. Microglial-neuronal interactions in synaptic damage and recovery. J Neurosci Res. 58: 191.
Barone, F. C., Arvin, B., White, R. F., Miller, A., Webb, C. L., Willette, R. N., Lysko, P. G., Feuerstein, G. Z., 1997. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke. 28(6): 1233.
Becher, B., Prat, A., Antel, J. P., 2002. Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia. 29: 293.
Bigler, E. D., Blatter, D. D., Johnson, S. C., Anderson, C. V., Russo, A. A., Gale, S. D., Ryser, D. K., MacNamara, S. E. and Bailey, B. J., 1996. Traumatic brain injury, alcohol and quantitative neuroimaging: preliminary findings. Brain Inj 10: 197.
Boutin, H., LeFeuvre, R. A., Horai, R., Asano, M., Iwakura, Y., Rothwell, N. J., 2001. Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci. 21: 5528.
Braughler, J. M., and Hall, E. D., 1989. Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radic Biol Med 6: 289.
Brett, F.M., Mizisin, A.P., Powell, H.C., Campbell, I. L., 1995. Evolution of neuropathologic abnormalities associated with blood-brain barrier breakdown in transgenic mice expressing interleukin-6 in astrocytes. J Neuropathol Exp Neurol. 54(6): 766.
Campbell, I. L., Abraham, C. R., Masliah, E., Kemper, P., Inglis, J.D., Oldstone, M.B., Mucke, L., 1993. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci U S A. 90(21): 10061.
Canals, S., Casarejos, M.J., de Bernardo, S., Rodriguez-Martin, E., Mena, M.A., 2003. Nitric oxide triggers the toxicity due to glutathione depletion in midbrain cultures through 12-lipoxygenase. J Biol Chem. 278(24): 21542.
Carlos T.M., Clark R.S., Franicola-Higgins D., Schiding J.K., Kochanek P.M., 1997. Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats. J Leukoc Biol 61: 279.
Chen, Y., Chan, P.H., Swanson, R.A., 2001. Astrocytes overexpressing Cu, Zn superoxide dismutase have increased resistance to oxidative injury. Glia 33: 343.
Chen, J., Li, Y., Wang, L., Zhang, Z., Lu, D., Lu, M., Chopp, M., 2001. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32: 1005.
Chang, E. F., Wong, R. J., Vreman, H. J., Igarashi, T., Galo, F., Sharp, R., Stevenson, D. K., and Noble-Haeusslein, L. J., 2003. Heme oxygenase-2 protects against lipid peroxidation-mediated cell loss and impaired motor recovery after traumatic brain injury. J Neurosci 23: 3689.
Choi, D. W., Rothman, S. M., 1990. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13: 171.
Cihangiroglu, M., Ramsey, R. G., Dohrmann, G. J., 2002. Brain injury: analysis of imaging modalities. Neurol Res 24: 7.
Clark, L., Hay, R.T., 1989. Sequence requirement for specific interaction of an enhancer binding protein (EBP1) with DNA. Nucleic Acids Res 17: 499.
Clifton, G. L., Miller, E. R., Choi, S. C., Levin, H. S., McCauley, S., Smith, K. R., Muizelaar, J. P., Wagner, F. C., Marion, D. W., Luerssen, T. G., Chesnut, R. M., and Schwartz, M., 2001. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 344: 556.
Cuevas, P., and Gimenez-Gallego, G., 1997. Role of fibroblast growth factors in neural trauma. Neurol Res 19: 254.
Dixon, C. E., Clifton, G. L., Lighthall, J. W., Yaghmai, A. A., Hayes, R. L., 1991. A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods. 39(3): 253.
Dietrich, W. D., Alonso, O., Busto, R., and Finklestein, S. P., 1996. Posttreatment with intravenous basic fibroblast growth factor reduces histopathological damage following fluid-percussion brain injury in rats. J Neurotrauma 13: 309.
Dziurdzik, P., Krawczyk, L., Jalowiecki, P., Kondera-Anasz, Z., and Menon, L., 2004. Serum interleukin-10 in ICU patients with severe acute central nervous system injuries. Inflamm Res 53: 338.
Ferrarese, C., Mascarucci, P., Zoia, C., Cavarretta, R., Frigo, M., Begni, B., Sarinella, F., Frattola, L., De Simoni, M. G., 1999. Increased cytokine release from peripheral blood cells after acute stroke. J Cereb Blood Flow Metab 19: 1004.
Feuerstein, G.Z., Liu, T., Barone, F.C., 1994. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev 6(4): 341.
Fischer and Mathieson, 2001. The history of the Glasgow Coma Scale: implications for practice. Crit Care Nurs Q 23(4): 52.
Gao, Z., Huang, K., Yang, X., Xu, H., 1999. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta. 16;1472(3): 643.
Gennarelli, T. A., Spielman, G. M., Langfitt, T. W., Gildenberg, P. L., Harrington, T., Jane, J. A., Marshall, L. F., Miller, J. D., and Pitts, L. H., 1982. Influence of the type of intracranial lesion on outcome from severe head injury. J Neurosurg 56: 26.
Gennarelli, T.A., 1994. Animate models of human head injury. J Neurotrauma. Aug; 11(4): 357.
Gentleman, S. M., Roberts, G. W., Gennarelli, T. A., Maxwell, W. L., Adams, J. H., Kerr, S., and Graham, D. I., 1995. Axonal injury: a universal consequence of fatal closed head injury? Acta Neuropathol (Berl) 89: 537.
Graham, D. I., Adams, J. H., Nicoll, J. A., Maxwell, W. L., and Gennarelli, T. A., 1995. The nature, distribution and causes of traumatic brain injury. Brain Pathol 5: 397.
Goss, J. R., Taffe, K. M., Kochanek, P. M., and DeKosky, S. T., 1997. The antioxidant enzymes glutathione peroxidase and catalase increase following traumatic brain injury in the rat. Exp Neurol 146: 291.
Hamada, H., Hiramatsu, M., Edamatsu, R., Mori, A., 1993. Free radical scavenging action of baicalein. Arch Biochem Biophys. 306(1): 261.
Hao, A. J., Dheen, S. T., Ling, E. A., 2001. Induction of cytokine expression in the brain macrophages/amoeboid microglia of the fetal rat exposed to a teratogen. Neuroreport. 12: 1391.
Hartl, R., Medary, M., Ruge, M., Arfors, K. E., and Ghajar, J., 1997. Blood-brain barrier breakdown occurs early after traumatic brain injury and is not related to white blood cell adherence. Acta Neurochir Suppl 70: 240.
Hellmich, H. L., Capra, B., Eidson, K., Garcia, J., Kennedy, D., Uchida, T., Parsley, M., Cowart, J., DeWitt, D. S., Prough, D. S., 2005. Dose-dependent neuronal injury after traumatic brain injury. Brain Res. 24; 1044(2): 144.
Holmin, S., Schalling, M., Hojeberg, B., Nordqvist, A.C., Skeftruna, A.K., Mathiesen, T., 1997. Delayed cytokine expression in rat brain following experimental contusion. J Neurosurg 86: 493.
Hwang, Y.S., Shin, C.Y., Huh, Y., Ryu, J.H., 2002. Hwangryun-Hae-Dok-tang (Huanglian-Jie-Du-Tang) extract and its constituents reduce ischemia-reperfusion brain injury and neutrophil infiltration in rats. Life Sci. 71(18): 2105.
Isis, M., van Loon, N. D., 1998. The Golden Root: Clinical Applications of Scutellaria baicalensis GEORGI flavonoids as Modulators of the Inflammatory Response Alternative Medicine Review. 3
Jafari, S. S., Maxwell, W. L., Neilson, M., and Graham, D. I., 1997. Axonal cytoskeletal changes after non-disruptive axonal injury. J Neurocytol 26: 207.
Jennett, B., Teasdale, G., 1977. Aspects of coma after severe head injury. Lancet 1: 878.
Jennett, B., Teasdale, G., Galbraith, S., Pickard, J., Grant, H., Braakman, R., Avezaat, C., Maas, A., Minderhoud, J., Vecht, C. J., Heiden, J., Small, R., Caton, W. and Kurze, T., 1977. Severe head injuries in three countries. J Neurol Neurosurg Psychiatry 40: 291.
Jennett, B., Teasdale, G., Braakman, R., Minderhoud, J., Heiden, J. and Kurze, T., 1979. Prognosis of patients with severe head injury. Neurosurgery 4: 283.
Jones, P. A., Andrews, P. J., Midgley, S., Anderson, S. I., Piper, I. R., Tocher, J. L., Housley, A. M., Corrie, J. A., Slattery, J., Dearden, N. M., 1994. Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol 6: 4.
Stover, J.F., Schoening, B., Beyer, T.F., Woiciechowsky, C., Unterberg, A.W., 2000. Temporal prople of cerebrospinal fluid glutamate, interleukin-6, and tumor necrosis factor-a in relation to brain edema and contusion following controlled cortical impact injury in rats. Neuroscience Letters 288: 25.
Kampfl, A., Posmantur, R. M., Zhao, X., Schmutzhard, E., Clifton, G. L., and Hayes, R. L., 1997. Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: implications for pathology and therapy: a review and update. J Neurotrauma 14: 121.
Kochanek, P. M., Clark, R. S., Ruppel, R. A., Adelson, P. D., Bell, M. J., Whalen, M. J., Robertson, C. L., Satchell, M. A., Seidberg, N. A., Marion, D. W. and Jenkins, L. W., 2000. Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: Lessons learned from the bedside. Pediatr Crit Care Med 1: 4.
Kontos, H. A. 1989. Oxygen radicals in CNS damage. Chem Biol Interact 72: 229.
Kyoungho, S., Heasuk, L., Sang, S. K., Gyeong, J. C., Wan, S. C. 2003. Flavonoid Baicalein Attenuates Activation-Induced Cell Death of Brain Microglia. JPET 305: 638.
Knoblach, S. M., L. Fan, and A. I. Faden. 1999. Early neuronal expression of tumor necrosis factor-alpha after experimental brain injury contributes to neurological impairment. J Neuroimmunol 95: 115.
Leker, R. R., and Shohami, E., 2002. Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res Brain Res Rev. 39(1): 55.
Lighthall, J.W., Dixon, C.E., Anderson, T.E., 1989. Experimental models of brain injury. J Neurotrauma 6(2):83-97.
Lucas, S.M., Rothwell, N.J., Gibson, R. M., 2006. The role of inflammation in CNS injury and disease. Br J Pharmacol 147(1): S232.
Lowry, O.H., Rosebrough., N. J., Farr., A. L., Randall., R. J., 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193(1): 265.
Loddick, S. A., Turnbull, A. V., Rothwell, N.J., 1998. Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. J Cereb Blood Flow Metab. 18(2): 176.
Martin, L. J., Al-Abdulla, N. A., Brambrink, A. M., Kirsch, J. R., Sieber, F. E. and Portera-Cailliau, C., 1998. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Res Bull 46: 281.
Mattson, M. P. and Cheng, B., 1993. Growth factors protect neurons against excitotoxic/ischemic damage by stabilizing calcium homeostasis. Stroke 24: I136.
McClain, C., Cohen, D., Phillips, R., Ott, L. and Young, B., 1991. Increased plasma and ventricular fluid interleukin-6 levels in patients with head injury. J Lab Clin Med 118: 225.
McClain, C. J., Cohen, D., Ott, L., Dinarello, C. A. and Young, B., 1987. Ventricular fluid interleukin-1 activity in patients with head injury. J Lab Clin Med 110: 48.
Morganti-Kossmann, M. C., Kossmann, T. and Wahl, S. M., 1992. Cytokines and neuropathology. Trends Pharmacol Sci 13: 286.
Morganti-Kossmann, M. C., Rancan, M., Stahel, P. F., Kossmann, T., 2002. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care 8: 101-105.
Moor, E., Kohen, R., Reiter, R. J. and Shohami, E., 2001. Closed head injury increases extracellular levels of antioxidants in rat hippocampus in vivo: an adaptive mechanism? Neurosci Lett 316: 169.
Nakamura, N., Hayasaka, S., Zhang, X.Y., Nagaki, Y., Matsumoto, M., Hayasaka, Y., Terasawa, K., 2003. Effects of baicalin, baicalein, and wogonin on interleukin-6 and interleukin-8 expression, and nuclear factor-kb binding activities induced by interleukin-1b in human retinal pigment epithelial cell line Experimental Eye Research 77: 19.
Obrenovitch, T. P., and Urenjak, J., 1997. Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J Neurotrauma 14: 677.
Palmer, A. M., Marion, D. W., Botscheller, M. L., Swedlow, P. E., Styren, S. D. and DeKosky, S. T., 1993. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem 61: 2015.
Plata-Salaman, C. R., 1991. Immunoregulators in the nervous system. Neurosci Biobehav Rev 15: 185.
Povlishock, J. T. and Christman, C. W., 1995. The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J Neurotrauma 12: 555.
Reimann-Philipp, U., Ovase, R., Weigel, P. H., Grammas, P., 2001. Mechanisms of cell death in primary cortical neurons and PC12 cells. J Neurosci Res. 64(6): 654.
Ross, S. A., Halliday, M. I., Campbell, G. C., Byrnes, D. P. and Rowlands, B. J., 1994. The presence of tumour necrosis factor in CSF and plasma after severe head injury. Br J Neurosurg 8: 419.
Sato, M., Chang, E., Igarashi, T., Noble, L. J., 2001. Neuronal injury and loss after traumatic brain injury: time course and regional variability.Brain Res. 917(1): 45.
Sawada, M., 1997. Cytokine network in the brain. Tanpakushitsu Kakusan Koso. 42: 504.
Seymour, A. B., Andrews, E. M., Tsai, S. Y., Markus, T. M., Bollnow, M. R., Brenneman, M. M., O'Brien, T. E., Castro, A. J., Schwab, M. E., Kartje, G. L., 2005. Delayed treatment with monoclonal antibody IN-1 1 week after stroke results in recovery of function and corticorubral plasticity in adult rats. J Cereb Blood Flow Metab. 25(10): 1366.
Shapira, Y., Shohami, E., Sidi, A., Soffer, D., Freeman, S., Cotev, S., 1988. Experimental closed head injury in rats: mechanical, pathophysiologic, and neurologic properties. Crit Care Med. 16(3): 258.
Shen, Y.C., Chiou, W.F., Chou, Y.C., Chen, C.F., 2003. Mechanisms in mediating the anti-inflammatory effects of baicalin and baicalein in human leukocytes. Eur J Pharmacol 465(1-2):171.
Shieh, D.E., Liu, L.T., Lin, C.C., 2000. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res. 20(5A):2861.
Shohami, E., Bass, R., Wallach, D., Yamin, A. and Gallily, R., 1996. Inhibition of tumor necrosis factor alpha (TNFalpha) activity in rat brain is associated with cerebroprotection after closed head injury. J Cereb Blood Flow Metab 16: 378.
Siesjo, B. K., Bengtsson, F., Grampp, W. and Theander, S., 1989. Calcium, excitotoxins, and neuronal death in the brain. Ann N Y Acad Sci 568: 234.
Soares, H.D., Hicks, R.R., Smith, D., McIntosh, T.K., 1995. Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J Neurosci 15: 8223.
Stover, J. F., Schoning, B., Beyer, T. F., Woiciechowsky, C., Unterberg, A. W., 2000. Temporal profile of cerebrospinal fluid glutamate, interleukin-6, and tumor necrosis factor-alpha in relation to brain edema and contusion following controlled cortical impact injury in rats. Neurosci Lett. 288(1): 25.
Taub, D. D., 1996. Chemokine-leukocyte interactions. The voodoo that they do so well. Cytokine Growth Factor Rev. 7(4): 355.
Teasdale, G., and B. Jennett., 1974. Assessment of coma and impaired consciousness. A practical scale. Lancet 2: 81.
Touzani, O., Boutin, H., Chuquet, J., Rothwell, N., 1999. Potential mechanisms of interleukin-1 involvement in cerebral ischaemia. J Neuroimmunol. 100(1-2): 203.
Truettner, J.S., Suzuki, T., Dietrich, W.D., 2005. The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. Brain Res Mol Brain Res 138: 124.
Vezzani, A., Moneta, D., Richichi, C., Perego, C., De Simoni, M.G., 2004. Functional role of proinflammatory and anti-inflammatory cytokines in seizures. Adv Exp Med Biol 548: 123.
Wang, J.Y., Shum, A.Y., Chao, C.C., Kuo, J.S., Wang, J.Y., 2000. Production of macrophage inflammatory protein-2 following hypoxia/reoxygenation in glial cells. Glia. 32(2): 155.
Woodroofe, M. N., Sarna, G. S., Wadhwa, M., Hayes, G. M., Loughlin, A. J., Tinker, A. and Cuzner, M. L., 1991. Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J Neuroimmunol 33: 227.
Yan, H. Q., Banos, M. A., Herregodts, P., Hooghe, R. and n Hooghe-Peters, E. L., 1992. Expression of interleukin (IL)-1 beta, IL-6 and their respective receptors in the normal rat brain and after injury. Eur J Immunol 22: 2963.
Yamasaki, Y., Matsuura, N., Shozuhara, H., Onodera, H., Itoyama, Y., Kogure, K., 1995. Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke. 26: 676.
Young, S. H., Chan, Y. S., Youngbuhm, H., Jong, H. R., 2002. Hwangryun-Hae-Dok-tang (Huanglian-Jie-Du-Tang) extract and its constituents reduce ischemia-reperfusion brain injury and neutrophil infiltration in rats Life Sciences. 71: 2105.
Yuh, C. S., Wen, F. C., Yueh, C. C., Chieh, F. C., 2003. Mechanisms in mediating the anti-inflammatory effects of baicalin and baicalein in human leukocytes European Journal of Pharmacology. 465: 171.
Zhao, X., Bausano, B., Pike, B. R., Newcomb-Fernandez, J. K., Wang, K. K., Shohami, E., Ringger, N. C., DeFord, S. M., Anderson, D. K., Hayes, R. L., 2001. TNF-alpha stimulates caspase-3 activation and apoptotic cell death in primary septo-hippocampal cultures. J Neurosci Res. 64(2): 121.
Zhong, W., Qingyou, D., Fusheng, W., Zhongrong, L., Baigang, L., Anmin, W., Yongyan, W., 2004. Microarray analysis of gene expression on herbal glycoside recipes improving deficient ability of spatial learning memory in ischemic mice Journal of Neurochemistry. 88: 1406.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文